Non-parametric small area estimation using penalized spline regression
The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2008-02, Vol.70 (1), p.265-286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper proposes a small area estimation approach that combines small area random effects with a smooth, non-parametrically specified trend. By using penalized splines as the representation for the non-parametric trend, it is possible to express the non-parametric small area estimation problem as a mixed effect model regression. The resulting model is readily fitted by using existing model fitting approaches such as restricted maximum likelihood. We present theoretical results on the prediction mean-squared error of the estimator proposed and on likelihood ratio tests for random effects, and we propose a simple non-parametric bootstrap approach for model inference and estimation of the small area prediction mean-squared error. The applicability of the method is demonstrated on a survey of lakes in north-eastern USA. |
---|---|
ISSN: | 1369-7412 1467-9868 |
DOI: | 10.1111/j.1467-9868.2007.00635.x |