A zero-inflated ordered probit model, with an application to modelling tobacco consumption

Data for discrete ordered dependent variables are often characterised by “excessive” zero observations which may relate to two distinct data generating processes. Traditional ordered probit models have limited capacity in explaining this preponderance of zero observations. We propose a zero-inflated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2007-12, Vol.141 (2), p.1073-1099
Hauptverfasser: Harris, Mark N., Zhao, Xueyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data for discrete ordered dependent variables are often characterised by “excessive” zero observations which may relate to two distinct data generating processes. Traditional ordered probit models have limited capacity in explaining this preponderance of zero observations. We propose a zero-inflated ordered probit model using a double-hurdle combination of a split probit model and an ordered probit model. Monte Carlo results show favourable performance in finite samples. The model is applied to a consumer choice problem of tobacco consumption indicating that policy recommendations could be misleading if the splitting process is ignored.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2007.01.002