HAC estimation in a spatial framework

We suggest a non-parametric heteroscedasticity and autocorrelation consistent (HAC) estimator of the variance–covariance (VC) matrix for a vector of sample moments within a spatial context. We demonstrate consistency under a set of assumptions that should be satisfied by a wide class of spatial mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2007-09, Vol.140 (1), p.131-154
Hauptverfasser: Kelejian, Harry H., Prucha, Ingmar R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We suggest a non-parametric heteroscedasticity and autocorrelation consistent (HAC) estimator of the variance–covariance (VC) matrix for a vector of sample moments within a spatial context. We demonstrate consistency under a set of assumptions that should be satisfied by a wide class of spatial models. We allow for more than one measure of distance, each of which may be measured with error. Monte Carlo results suggest that our estimator is reasonable in finite samples. We then consider a spatial model containing various complexities and demonstrate that our HAC estimator can be applied in the context of that model.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2006.09.005