Forecasting Time Series Subject to Multiple Structural Breaks

This paper provides a new approach to forecasting time series that are subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks occurring over the forecast horizon, taking account of the size and duration of past b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 2006-10, Vol.73 (4), p.1057-1084
Hauptverfasser: Pesaran, M. Hashem, Davide Pettenuzzo, Timmermann, Allan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper provides a new approach to forecasting time series that are subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks occurring over the forecast horizon, taking account of the size and duration of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are formed by integrating over the parameters from the meta-distribution that characterizes the stochastic break-point process. In an application to U.S. Treasury bill rates, we find that the method leads to better out-of-sample forecasts than a range of alternative methods.
ISSN:0034-6527
1467-937X
DOI:10.1111/j.1467-937X.2006.00408.x