A MATLAB program for 1D strain rate inversion

This paper presents a MATLAB program designed to invert 1D strain rate from subsidence data. In forward modeling, we use an implicit finite difference scheme to solve the heat conduction equation with an advective term. In the inversion, we adopt the Powell algorithm to continually search for the op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & geosciences 2010, Vol.36 (1), p.16-23
Hauptverfasser: Song, Hai-Bin, Chen, Lin, Zhang, Jiong, Zhao, Chang-Yu, Dong, Chong-Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a MATLAB program designed to invert 1D strain rate from subsidence data. In forward modeling, we use an implicit finite difference scheme to solve the heat conduction equation with an advective term. In the inversion, we adopt the Powell algorithm to continually search for the optimal values of strain rate until the fit, defined by the difference between the calculated subsidence and the observed subsidence, is satisfactory. Synthetic datasets are generated, and one of them is used to test the inversion algorithm. The results show that the calculated subsidence fit the theoretical subsidence quite well, and the inverted strain rate oscillates around the true value and is a good approximation to the original strain rate variation. The program is applied to the northern continental margin of the South China Sea, and the inverted strain rate from WC1411 well reveals the multiple rifting events that occurred in this region. The inverted strain rate can be used to evaluate the stretching factor and provides constraints for dynamic modeling of lithospheric deformation.
ISSN:0098-3004
1873-7803
DOI:10.1016/j.cageo.2009.08.002