Bootstrap specification tests for linear covariance stationary processes

This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2006-08, Vol.133 (2), p.807-839
Hauptverfasser: Hidalgo, J., Kreiss, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 839
container_issue 2
container_start_page 807
container_title Journal of econometrics
container_volume 133
creator Hidalgo, J.
Kreiss, J.-P.
description This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not easy, if at all possible, to find a time deformation g ( ϑ ) such that B ˜ ( g ( ϑ ) ) is a Brownian (bridge) process, tests based on B ˜ ( ϑ ) will have limited value for the purpose of statistical inference. To circumvent the problem, we propose to bootstrap the test showing its validity. We also provide a Monte-Carlo experiment to examine the finite sample behaviour of the bootstrap.
doi_str_mv 10.1016/j.jeconom.2005.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36491497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440760500134X</els_id><sourcerecordid>1147254811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-e5e2a97d3f41ee0acc76ac50777f234495b6e160db73ce6d651cc76cffddc51c3</originalsourceid><addsrcrecordid>eNqFkUGL1TAQx4Mo-Fz9CEIR9NaaNE3SnkQXdcUFL3oO2XSCKX1NzeQ92G_vdPtQ8GJgMnP4zeQ__zD2UvBGcKHfTs0EPi3p2LScq4brhgv1iB1Eb9pa94N6zA5c8q7uuNFP2TPEiRPY9fLAbj6kVLBkt1a4go8heldiWqoCWLAKKVdzXMDlyqezy9EtHiosD4zL99WakwdEwOfsSXAzwotLvmI_Pn38fn1T3377_OX6_W3tVWtKDQpaN5hRhk4AcOe90c4rbowJrey6Qd1pEJqPd0Z60KNWYkN8COPoqZZX7M0-l17-dSKR9hjRwzy7BdIJrdTdILrBEPjqH3BKp7yQNisGrXU76A1SO-RzQswQ7JrjkRazgtvNXDvZi7l2M9dybclc6vu692Ug1_40AZ0dPlvphJR031NQq6YUt5Jipei5sb0c7M9ypGmvL1IdejeHTC5H_Cul532vHlZ6t3NABp8jZIs-Av3IGDP4YscU_6P7N_tCrVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196662967</pqid></control><display><type>article</type><title>Bootstrap specification tests for linear covariance stationary processes</title><source>RePEc</source><source>Access via ScienceDirect (Elsevier)</source><creator>Hidalgo, J. ; Kreiss, J.-P.</creator><creatorcontrib>Hidalgo, J. ; Kreiss, J.-P.</creatorcontrib><description>This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not easy, if at all possible, to find a time deformation g ( ϑ ) such that B ˜ ( g ( ϑ ) ) is a Brownian (bridge) process, tests based on B ˜ ( ϑ ) will have limited value for the purpose of statistical inference. To circumvent the problem, we propose to bootstrap the test showing its validity. We also provide a Monte-Carlo experiment to examine the finite sample behaviour of the bootstrap.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2005.06.015</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applications ; Bootstrap mechanism ; Bootstrap method ; Bootstrap tests ; Brownian motion ; Covariance ; Economic theory ; Exact sciences and technology ; Gaussian process ; Gaussian processes ; Goodness-of-fit ; Inference from stochastic processes; time series analysis ; Insurance, economics, finance ; Linear models ; Linear processes ; Mathematics ; Monte Carlo simulation ; Normal distribution ; Probability and statistics ; Sciences and techniques of general use ; Spectral distribution ; Statistics ; Studies</subject><ispartof>Journal of econometrics, 2006-08, Vol.133 (2), p.807-839</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-e5e2a97d3f41ee0acc76ac50777f234495b6e160db73ce6d651cc76cffddc51c3</citedby><cites>FETCH-LOGICAL-c527t-e5e2a97d3f41ee0acc76ac50777f234495b6e160db73ce6d651cc76cffddc51c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2005.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,4008,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18088597$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeeeconom/v_3a133_3ay_3a2006_3ai_3a2_3ap_3a807-839.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hidalgo, J.</creatorcontrib><creatorcontrib>Kreiss, J.-P.</creatorcontrib><title>Bootstrap specification tests for linear covariance stationary processes</title><title>Journal of econometrics</title><description>This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not easy, if at all possible, to find a time deformation g ( ϑ ) such that B ˜ ( g ( ϑ ) ) is a Brownian (bridge) process, tests based on B ˜ ( ϑ ) will have limited value for the purpose of statistical inference. To circumvent the problem, we propose to bootstrap the test showing its validity. We also provide a Monte-Carlo experiment to examine the finite sample behaviour of the bootstrap.</description><subject>Applications</subject><subject>Bootstrap mechanism</subject><subject>Bootstrap method</subject><subject>Bootstrap tests</subject><subject>Brownian motion</subject><subject>Covariance</subject><subject>Economic theory</subject><subject>Exact sciences and technology</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>Goodness-of-fit</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Insurance, economics, finance</subject><subject>Linear models</subject><subject>Linear processes</subject><subject>Mathematics</subject><subject>Monte Carlo simulation</subject><subject>Normal distribution</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Spectral distribution</subject><subject>Statistics</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkUGL1TAQx4Mo-Fz9CEIR9NaaNE3SnkQXdcUFL3oO2XSCKX1NzeQ92G_vdPtQ8GJgMnP4zeQ__zD2UvBGcKHfTs0EPi3p2LScq4brhgv1iB1Eb9pa94N6zA5c8q7uuNFP2TPEiRPY9fLAbj6kVLBkt1a4go8heldiWqoCWLAKKVdzXMDlyqezy9EtHiosD4zL99WakwdEwOfsSXAzwotLvmI_Pn38fn1T3377_OX6_W3tVWtKDQpaN5hRhk4AcOe90c4rbowJrey6Qd1pEJqPd0Z60KNWYkN8COPoqZZX7M0-l17-dSKR9hjRwzy7BdIJrdTdILrBEPjqH3BKp7yQNisGrXU76A1SO-RzQswQ7JrjkRazgtvNXDvZi7l2M9dybclc6vu692Ug1_40AZ0dPlvphJR031NQq6YUt5Jipei5sb0c7M9ypGmvL1IdejeHTC5H_Cul532vHlZ6t3NABp8jZIs-Av3IGDP4YscU_6P7N_tCrVg</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Hidalgo, J.</creator><creator>Kreiss, J.-P.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20060801</creationdate><title>Bootstrap specification tests for linear covariance stationary processes</title><author>Hidalgo, J. ; Kreiss, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-e5e2a97d3f41ee0acc76ac50777f234495b6e160db73ce6d651cc76cffddc51c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applications</topic><topic>Bootstrap mechanism</topic><topic>Bootstrap method</topic><topic>Bootstrap tests</topic><topic>Brownian motion</topic><topic>Covariance</topic><topic>Economic theory</topic><topic>Exact sciences and technology</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>Goodness-of-fit</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Insurance, economics, finance</topic><topic>Linear models</topic><topic>Linear processes</topic><topic>Mathematics</topic><topic>Monte Carlo simulation</topic><topic>Normal distribution</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Spectral distribution</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo, J.</creatorcontrib><creatorcontrib>Kreiss, J.-P.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidalgo, J.</au><au>Kreiss, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bootstrap specification tests for linear covariance stationary processes</atitle><jtitle>Journal of econometrics</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>133</volume><issue>2</issue><spage>807</spage><epage>839</epage><pages>807-839</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not easy, if at all possible, to find a time deformation g ( ϑ ) such that B ˜ ( g ( ϑ ) ) is a Brownian (bridge) process, tests based on B ˜ ( ϑ ) will have limited value for the purpose of statistical inference. To circumvent the problem, we propose to bootstrap the test showing its validity. We also provide a Monte-Carlo experiment to examine the finite sample behaviour of the bootstrap.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2005.06.015</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2006-08, Vol.133 (2), p.807-839
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_36491497
source RePEc; Access via ScienceDirect (Elsevier)
subjects Applications
Bootstrap mechanism
Bootstrap method
Bootstrap tests
Brownian motion
Covariance
Economic theory
Exact sciences and technology
Gaussian process
Gaussian processes
Goodness-of-fit
Inference from stochastic processes
time series analysis
Insurance, economics, finance
Linear models
Linear processes
Mathematics
Monte Carlo simulation
Normal distribution
Probability and statistics
Sciences and techniques of general use
Spectral distribution
Statistics
Studies
title Bootstrap specification tests for linear covariance stationary processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bootstrap%20specification%20tests%20for%20linear%20covariance%20stationary%20processes&rft.jtitle=Journal%20of%20econometrics&rft.au=Hidalgo,%20J.&rft.date=2006-08-01&rft.volume=133&rft.issue=2&rft.spage=807&rft.epage=839&rft.pages=807-839&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2005.06.015&rft_dat=%3Cproquest_cross%3E1147254811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196662967&rft_id=info:pmid/&rft_els_id=S030440760500134X&rfr_iscdi=true