Bootstrap specification tests for linear covariance stationary processes

This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2006-08, Vol.133 (2), p.807-839
Hauptverfasser: Hidalgo, J., Kreiss, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses goodness-of-fit tests for linear covariance stationary processes based on the empirical spectral distribution function. We can show that the limiting distribution of the tests are functionals of a Gaussian process, say, B ˜ ( ϑ ) with ϑ ∈ [ 0 , 1 ] . Since in general it is not easy, if at all possible, to find a time deformation g ( ϑ ) such that B ˜ ( g ( ϑ ) ) is a Brownian (bridge) process, tests based on B ˜ ( ϑ ) will have limited value for the purpose of statistical inference. To circumvent the problem, we propose to bootstrap the test showing its validity. We also provide a Monte-Carlo experiment to examine the finite sample behaviour of the bootstrap.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2005.06.015