Higher-order improvements of the parametric bootstrap for long-memory Gaussian processes

This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d 0 are included. The results establish that the bootstrap provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2006-08, Vol.133 (2), p.673-702
Hauptverfasser: Andrews, Donald W.K., Lieberman, Offer, Marmer, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d 0 are included. The results establish that the bootstrap provides higher-order improvements over the delta method. Analogous results are given for tests. The CIs and tests are based on one or other of two approximate maximum likelihood estimators. The first estimator solves the first-order conditions with respect to the covariance parameters of a “plug-in” log-likelihood function that has the unknown mean replaced by the sample mean. The second estimator does likewise for a plug-in Whittle log-likelihood. The magnitudes of the coverage probability errors for one-sided bootstrap CIs for covariance parameters for long-memory time series are shown to be essentially the same as they are with iid data. This occurs even though the mean of the time series cannot be estimated at the usual n 1 / 2 rate.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2005.06.010