The entrainment factor in froth flotation: Model for particle size and other operating parameter effects
Accurately estimating entrainment is crucial when predicting flotation performance as it is essential for determining the concentrate grade achieved. It has been found previously that the amount of gangue entrained is proportional to the water recovery; this proportionality is referred to as the ent...
Gespeichert in:
Veröffentlicht in: | International journal of mineral processing 2009-10, Vol.93 (2), p.141-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurately estimating entrainment is crucial when predicting flotation performance as it is essential for determining the concentrate grade achieved. It has been found previously that the amount of gangue entrained is proportional to the water recovery; this proportionality is referred to as the entrainment factor. Experimentally it has been found that entrainment is a strong function of particle size, as well as being dependent on other cell operating parameters such as froth depth and air rate.
A simplified theoretical model for entrainment is developed which includes the effects of liquid motion and content, particle settling and particle dispersion. First, a detailed one-dimensional differential model for the entrainment factor is developed and solved numerically. Thereafter, a simplified analytical expression for the entrainment factor is produced which is a good approximation to the more detailed one-dimensional model. Both these models are shown to predict closely experimental trends for entrainment as a function of particle size and froth depth. |
---|---|
ISSN: | 0301-7516 1879-3525 |
DOI: | 10.1016/j.minpro.2009.07.004 |