Wavelet method for solving second-order quasilinear parabolic equations with a conservative principal part

A method based on wavelet transforms is proposed for finding classical solutions to initial-boundary value problems for second-order quasilinear parabolic equations. For smooth data, the convergence of the method is proved and the convergence rate of an approximate weak solution to a classical one i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2009-09, Vol.49 (9), p.1554-1566
Hauptverfasser: Abbasov, E. M., Dyshin, O. A., Suleimanov, B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method based on wavelet transforms is proposed for finding classical solutions to initial-boundary value problems for second-order quasilinear parabolic equations. For smooth data, the convergence of the method is proved and the convergence rate of an approximate weak solution to a classical one is estimated in the space of wavelet coefficients. An approximate weak solution of the problem is found by solving a nonlinear system of equations with the help of gradient-type iterative methods with projection onto a fixed subspace of basis wavelet functions.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542509090103