Well-posedness in the energy space for non-linear system of wave equations with critical growth
The authors consider the well-posedness in energy space of the critical non-linear system of wave equations with Hamiltonian structure where there exists a function F ( λ , µ) such that By showing that the energy and dilation identities hold for weak solution under some assumptions on the non-linear...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2008, Vol.24 (1), p.17-26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors consider the well-posedness in energy space of the critical non-linear system of wave equations with Hamiltonian structure
where there exists a function
F
(
λ
, µ) such that
By showing that the energy and dilation identities hold for weak solution under some assumptions on the non-linearities, we prove the global well-posedness in energy space by a similar argument to that for global regularity as shown in “Shatah and Struwe’s paper, Ann. of Math.
138
, 503–518 (1993)”. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-007-1031-8 |