Well-posedness in the energy space for non-linear system of wave equations with critical growth

The authors consider the well-posedness in energy space of the critical non-linear system of wave equations with Hamiltonian structure where there exists a function F ( λ , µ) such that By showing that the energy and dilation identities hold for weak solution under some assumptions on the non-linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2008, Vol.24 (1), p.17-26
Hauptverfasser: Miao, Chang Xing, Zhu, You Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The authors consider the well-posedness in energy space of the critical non-linear system of wave equations with Hamiltonian structure where there exists a function F ( λ , µ) such that By showing that the energy and dilation identities hold for weak solution under some assumptions on the non-linearities, we prove the global well-posedness in energy space by a similar argument to that for global regularity as shown in “Shatah and Struwe’s paper, Ann. of Math. 138 , 503–518 (1993)”.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-007-1031-8