The mimetic finite difference method on polygonal meshes for diffusion-type problems
New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2004-12, Vol.8 (4), p.301-324 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal, locally refined and non-matching meshes are demonstrated with numerical experiments. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1420-0597 1573-1499 |
DOI: | 10.1007/s10596-004-3771-1 |