The mimetic finite difference method on polygonal meshes for diffusion-type problems

New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2004-12, Vol.8 (4), p.301-324
Hauptverfasser: Kuznetsov, Y, Lipnikov, K, Shashkov, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New mimetic discretizations of diffusion-type equations (for instance, equations modeling single phase Darcy flow in porous media) on unstructured polygonal meshes are derived. The first order convergence rate for the fluid velocity and the second-order convergence rate for the pressure on polygonal, locally refined and non-matching meshes are demonstrated with numerical experiments. [PUBLICATION ABSTRACT]
ISSN:1420-0597
1573-1499
DOI:10.1007/s10596-004-3771-1