Relationships between Lightning Location and Polarimetric Radar Signatures in a Small Mesoscale Convective System

On 19 June 2004, the Thunderstorm Electrification and Lightning Experiment observed electrical, microphysical, and kinematic properties of a small mesoscale convective system (MCS). The primary observing systems were the Oklahoma Lightning Mapping Array, the KOUN S-band polarimetric radar, two mobil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2009-12, Vol.137 (12), p.4151-4170
Hauptverfasser: LUND, Nicole R, MACGORMAN, Donald R, SCHUUR, Terry J, BIGGERSTAFF, Michael I, DAVID RUST, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On 19 June 2004, the Thunderstorm Electrification and Lightning Experiment observed electrical, microphysical, and kinematic properties of a small mesoscale convective system (MCS). The primary observing systems were the Oklahoma Lightning Mapping Array, the KOUN S-band polarimetric radar, two mobile C-band Doppler radars, and balloonborne electric field meters. During its mature phase, this MCS had a normal tripolar charge structure (lightning involved a midlevel negative charge between an upper and a lower positive charge), and flash rates fluctuated between 80 and 100 flashes per minute. Most lightning was initiated within one of two altitude ranges (3–6 or 7–10 km MSL) and within the 35-dBZ contours of convective cells embedded within the convective line. The properties of two such cells were investigated in detail, with the first lasting approximately 40 min and producing only 12 flashes and the second lasting over an hour and producing 105 flashes. In both, lightning was initiated in or near regions containing graupel. The upper lightning initiation region (7–10 km MSL) was near 35–47.5-dBZ contours, with graupel inferred below and ice crystals inferred above. The lower lightning initiation region (3–6 km MSL) was in the upper part of melting or freezing layers, often near differential reflectivity columns extending above the 0°C isotherm, which is suggestive of graupel formation. Both lightning initiation regions are consistent with what is expected from the noninductive graupel–ice thunderstorm electrification mechanism, though inductive processes may also have contributed to initiations in the lower region.
ISSN:0027-0644
1520-0493
DOI:10.1175/2009mwr2860.1