Register computations on ordinals
We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a n...
Gespeichert in:
Veröffentlicht in: | Archive for mathematical logic 2008-09, Vol.47 (6), p.529-548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals.
Ordinal register machines
are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel axioms ZFC. This allows the following characterization of computable sets: a set of ordinals is ordinal register computable if and only if it is an element of Gödel’s constructible universe
L
. |
---|---|
ISSN: | 0933-5846 1432-0665 |
DOI: | 10.1007/s00153-008-0093-3 |