Register computations on ordinals

We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2008-09, Vol.47 (6), p.529-548
Hauptverfasser: Koepke, Peter, Siders, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize ordinary register machines on natural numbers to machines whose registers contain arbitrary ordinals. Ordinal register machines are able to compute a recursive bounded truth predicate on the ordinals. The class of sets of ordinals which can be read off the truth predicate satisfies a natural theory SO. SO is the theory of the sets of ordinals in a model of the Zermelo-Fraenkel axioms ZFC. This allows the following characterization of computable sets: a set of ordinals is ordinal register computable if and only if it is an element of Gödel’s constructible universe L .
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-008-0093-3