A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy
We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and th...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2009-09, Vol.43 (5), p.1003-1026 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm. |
---|---|
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an/2009015 |