Amarts on Riesz spaces
The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math., 15 (2004), 435–451). Here we extend the definition of an asymptotic martingale (amart) t...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2008-02, Vol.24 (2), p.329-342 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concepts of conditional expectations, martingales and stopping times were extended to the Riesz space context by Kuo, Labuschagne and Watson (Discrete time stochastic processes on Riesz spaces, Indag. Math.,
15
(2004), 435–451). Here we extend the definition of an asymptotic martingale (amart) to the Riesz spaces context, and prove that Riesz space amarts can be decomposed into the sum of a martingale and an adapted sequence convergent to zero. Consequently an amart convergence theorem is deduced. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-007-1025-6 |