Measurement of particle diameter of Lactobacillus acidophilus microcapsule by spray drying and analysis on its microstructure

Lactobacillus acidophilus, as a probiotic, is widely used in many functional food products. Microencapsulation not only increases the survival rate of L. acidophilus during storage and extends the shelf-life of its products, but also optimal size microcapsule makes L. acidophilus have an excellent d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2008-08, Vol.24 (8), p.1349-1354
Hauptverfasser: Zhao, Ruixiang, Sun, Junliang, Torley, Peter, Wang, Dahong, Niu, Shengyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lactobacillus acidophilus, as a probiotic, is widely used in many functional food products. Microencapsulation not only increases the survival rate of L. acidophilus during storage and extends the shelf-life of its products, but also optimal size microcapsule makes L. acidophilus have an excellent dispersability in final products. In this paper, L. acidophilus was microencapsulated using spray drying (inlet air temperature of 170°C; outlet air temperature of 85-90°C). The wall materials used in this study were β-cyclodextrin and acacia gum in the proportion of 9:1 (w/w), and microcapsules were prepared at four levels of wall materials (15, 20, 25 and 30% [w/v]) with a core material concentration of 6% (v/v). The microcapsule diameters were measured by Malvern's Mastersizer-2000 particle size analyzer. The results showed that the particle diameters of microcapsule were mostly within 6.607 μm and 60.256 μm and varied with 2.884-120.226 μm (the standard smaller microcapsule designated as
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-007-9615-0