Landau-Ginzburg-type equations on the half-line in the critical case
We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global ex...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-12, Vol.135 (6), p.1241-1262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 6 |
container_start_page | 1241 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 135 |
creator | Kaikina, Elena I Ruiz-Paredes, Hector F |
description | We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation. |
doi_str_mv | 10.1017/S0308210505000636 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36375464</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_363754643</originalsourceid><addsrcrecordid>eNqNyrsOwiAYhmEGTayHC3BjckNBWtrd4-Cme4P412IQaoFBr14bvQDzDW_y5ENoyuicUZYvjpTTYslo9hmlgoseSjoinQ3Q0Ptb50WWJ2h9kPYiI9lp-zrH9krCswEMjyiDdtZjZ3GoAdfSVMRoC1h_QbU6aCUNVtLDGPUraTxMfh2h2XZzWu1J07pHBB_Ku_YKjJEWXPQlFzzPUpHyv49vYuxCBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36375464</pqid></control><display><type>article</type><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><source>Cambridge University Press Journals Complete</source><creator>Kaikina, Elena I ; Ruiz-Paredes, Hector F</creator><creatorcontrib>Kaikina, Elena I ; Ruiz-Paredes, Hector F</creatorcontrib><description>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</description><identifier>ISSN: 0308-2105</identifier><identifier>DOI: 10.1017/S0308210505000636</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-12, Vol.135 (6), p.1241-1262</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaikina, Elena I</creatorcontrib><creatorcontrib>Ruiz-Paredes, Hector F</creatorcontrib><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</description><issn>0308-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOwiAYhmEGTayHC3BjckNBWtrd4-Cme4P412IQaoFBr14bvQDzDW_y5ENoyuicUZYvjpTTYslo9hmlgoseSjoinQ3Q0Ptb50WWJ2h9kPYiI9lp-zrH9krCswEMjyiDdtZjZ3GoAdfSVMRoC1h_QbU6aCUNVtLDGPUraTxMfh2h2XZzWu1J07pHBB_Ku_YKjJEWXPQlFzzPUpHyv49vYuxCBQ</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Kaikina, Elena I</creator><creator>Ruiz-Paredes, Hector F</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20051201</creationdate><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><author>Kaikina, Elena I ; Ruiz-Paredes, Hector F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_363754643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaikina, Elena I</creatorcontrib><creatorcontrib>Ruiz-Paredes, Hector F</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaikina, Elena I</au><au>Ruiz-Paredes, Hector F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landau-Ginzburg-type equations on the half-line in the critical case</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>135</volume><issue>6</issue><spage>1241</spage><epage>1262</epage><pages>1241-1262</pages><issn>0308-2105</issn><abstract>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</abstract><doi>10.1017/S0308210505000636</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-12, Vol.135 (6), p.1241-1262 |
issn | 0308-2105 |
language | eng |
recordid | cdi_proquest_miscellaneous_36375464 |
source | Cambridge University Press Journals Complete |
title | Landau-Ginzburg-type equations on the half-line in the critical case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landau-Ginzburg-type%20equations%20on%20the%20half-line%20in%20the%20critical%20case&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Kaikina,%20Elena%20I&rft.date=2005-12-01&rft.volume=135&rft.issue=6&rft.spage=1241&rft.epage=1262&rft.pages=1241-1262&rft.issn=0308-2105&rft_id=info:doi/10.1017/S0308210505000636&rft_dat=%3Cproquest%3E36375464%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36375464&rft_id=info:pmid/&rfr_iscdi=true |