Landau-Ginzburg-type equations on the half-line in the critical case

We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-12, Vol.135 (6), p.1241-1262
Hauptverfasser: Kaikina, Elena I, Ruiz-Paredes, Hector F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1262
container_issue 6
container_start_page 1241
container_title Proceedings of the Royal Society of Edinburgh. Section A. Mathematics
container_volume 135
creator Kaikina, Elena I
Ruiz-Paredes, Hector F
description We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.
doi_str_mv 10.1017/S0308210505000636
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_36375464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36375464</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_363754643</originalsourceid><addsrcrecordid>eNqNyrsOwiAYhmEGTayHC3BjckNBWtrd4-Cme4P412IQaoFBr14bvQDzDW_y5ENoyuicUZYvjpTTYslo9hmlgoseSjoinQ3Q0Ptb50WWJ2h9kPYiI9lp-zrH9krCswEMjyiDdtZjZ3GoAdfSVMRoC1h_QbU6aCUNVtLDGPUraTxMfh2h2XZzWu1J07pHBB_Ku_YKjJEWXPQlFzzPUpHyv49vYuxCBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36375464</pqid></control><display><type>article</type><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><source>Cambridge University Press Journals Complete</source><creator>Kaikina, Elena I ; Ruiz-Paredes, Hector F</creator><creatorcontrib>Kaikina, Elena I ; Ruiz-Paredes, Hector F</creatorcontrib><description>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r &gt; 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</description><identifier>ISSN: 0308-2105</identifier><identifier>DOI: 10.1017/S0308210505000636</identifier><language>eng</language><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-12, Vol.135 (6), p.1241-1262</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kaikina, Elena I</creatorcontrib><creatorcontrib>Ruiz-Paredes, Hector F</creatorcontrib><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><description>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r &gt; 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</description><issn>0308-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNyrsOwiAYhmEGTayHC3BjckNBWtrd4-Cme4P412IQaoFBr14bvQDzDW_y5ENoyuicUZYvjpTTYslo9hmlgoseSjoinQ3Q0Ptb50WWJ2h9kPYiI9lp-zrH9krCswEMjyiDdtZjZ3GoAdfSVMRoC1h_QbU6aCUNVtLDGPUraTxMfh2h2XZzWu1J07pHBB_Ku_YKjJEWXPQlFzzPUpHyv49vYuxCBQ</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Kaikina, Elena I</creator><creator>Ruiz-Paredes, Hector F</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20051201</creationdate><title>Landau-Ginzburg-type equations on the half-line in the critical case</title><author>Kaikina, Elena I ; Ruiz-Paredes, Hector F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_363754643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaikina, Elena I</creatorcontrib><creatorcontrib>Ruiz-Paredes, Hector F</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaikina, Elena I</au><au>Ruiz-Paredes, Hector F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landau-Ginzburg-type equations on the half-line in the critical case</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><date>2005-12-01</date><risdate>2005</risdate><volume>135</volume><issue>6</issue><spage>1241</spage><epage>1262</epage><pages>1241-1262</pages><issn>0308-2105</issn><abstract>We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r &gt; 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.</abstract><doi>10.1017/S0308210505000636</doi></addata></record>
fulltext fulltext
identifier ISSN: 0308-2105
ispartof Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2005-12, Vol.135 (6), p.1241-1262
issn 0308-2105
language eng
recordid cdi_proquest_miscellaneous_36375464
source Cambridge University Press Journals Complete
title Landau-Ginzburg-type equations on the half-line in the critical case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landau-Ginzburg-type%20equations%20on%20the%20half-line%20in%20the%20critical%20case&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Kaikina,%20Elena%20I&rft.date=2005-12-01&rft.volume=135&rft.issue=6&rft.spage=1241&rft.epage=1262&rft.pages=1241-1262&rft.issn=0308-2105&rft_id=info:doi/10.1017/S0308210505000636&rft_dat=%3Cproquest%3E36375464%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36375464&rft_id=info:pmid/&rfr_iscdi=true