Landau-Ginzburg-type equations on the half-line in the critical case

We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2005-12, Vol.135 (6), p.1241-1262
Hauptverfasser: Kaikina, Elena I, Ruiz-Paredes, Hector F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study nonlinear Landau-Ginzburg-type equations on the half-line in the critical case where b C, r > 2. The linear operator K is a pseudodifferential operator defined by the inverse Laplace transform with dissipative symbol K(p) = apr, M = [1/2r]. The aim of this paper is to prove the global existence of solutions to the initial-boundary-value problem and to find the main term of the asymptotic representation of solutions in the critical case, when the time decay of the nonlinearity has the same rate as that of the linear part of the equation.
ISSN:0308-2105
DOI:10.1017/S0308210505000636