Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric

We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2009-04, Vol.9 (2), p.171-178
1. Verfasser: Shub, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one end and thus produce an approximate zero for the endpoint. This motivates the study of short paths or geodesics in the condition metric.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-007-9017-6