Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric
We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one en...
Gespeichert in:
Veröffentlicht in: | Foundations of computational mathematics 2009-04, Vol.9 (2), p.171-178 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one end and thus produce an approximate zero for the endpoint. This motivates the study of short paths or geodesics in the condition metric. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-007-9017-6 |