Diffusion in multi-component polymeric systems: Diffusion of non-volatile species in thin films

Polymeric films for high-tech products like LCD-panels, transdermal patches or medical test strips typically consist of a polymer and one or more non-volatile additives. If during the production process a multi-component solution is coated and subsequently dried, the diffusion of solvents and non-vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2009, Vol.166 (1), p.103-106
Hauptverfasser: Müller, M., Kind, M., Cairncross, R., Schabel, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymeric films for high-tech products like LCD-panels, transdermal patches or medical test strips typically consist of a polymer and one or more non-volatile additives. If during the production process a multi-component solution is coated and subsequently dried, the diffusion of solvents and non-volatile species in the polymeric systems plays an important role. Recent experiments revealed that the drying conditions can have a significant influence on the formation of inhomogeneous distribution of the non-volatile components in the final foil and therefore affects desired product properties. The distribution of the non-volatile components in the final film has an important impact on the physical and chemical properties, including mechanical and optical properties, wetting behavior or drug release rates i.e. the product quality of the polymeric system. To be able to describe the diffusion of non-volatile species in a multi-component polymeric system during drying correctly, reliable information about the influence of the solvent concentration on the mobility of the additive are essential. To obtain information about the mobility of the additive in the polymeric solution new experiments were performed and observed by means of Inverse-Micro-Raman-Spectroscopy (IMRS). By fitting simulated concentration profiles to the experimental data, the temperature and concentration dependent diffusion coefficient of the non-volatile additive in the polymer solution was determined. The investigations are part of a bilateral funding of NFG in the US and DFG in Germany. Diffusion of volatile species in multicomponent polymeric systems are investigated by the group of Richard Cairncross.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2009-00887-9