Chains and antichains in partial orderings

We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is or , and also obtain the analogous result for antichains. On the other hand, we show that every computable parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for mathematical logic 2009-02, Vol.48 (1), p.39-53
Hauptverfasser: Harizanov, Valentina S., Jockusch, Carl G., Knight, Julia F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the complexity of infinite chains and antichains in computable partial orderings. We show that there is a computable partial ordering which has an infinite chain but none that is or , and also obtain the analogous result for antichains. On the other hand, we show that every computable partial ordering which has an infinite chain must have an infinite chain that is the difference of two sets. Our main result is that there is a computably axiomatizable theory K of partial orderings such that K has a computable model with arbitrarily long finite chains but no computable model with an infinite chain. We also prove the corresponding result for antichains. Finally, we prove that if a computable partial ordering has the feature that for every , there is an infinite chain or antichain that is relative to , then we have uniform dichotomy: either for all copies of , there is an infinite chain that is relative to , or for all copies of , there is an infinite antichain that is relative to .
ISSN:0933-5846
1432-0665
DOI:10.1007/s00153-008-0114-2