Preparation of a new micro-porous poly(methyl methacrylate)-grafted polyethylene separator for high performance Li secondary battery

In this study, micro-porous poly(methyl methacrylate)-grafted polyethylene separators (PE-g-PMMA) were prepared by a radiation-induced graft polymerization of methyl methacrylate onto a conventional PE separator followed by a phase inversion. After the phase inversion, the micro-pores were generated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2009-10, Vol.267 (19), p.3309-3313
Hauptverfasser: Gwon, Sung-Jin, Choi, Jae-Hak, Sohn, Joon-Yong, Ihm, Young-Eon, Nho, Young-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, micro-porous poly(methyl methacrylate)-grafted polyethylene separators (PE-g-PMMA) were prepared by a radiation-induced graft polymerization of methyl methacrylate onto a conventional PE separator followed by a phase inversion. After the phase inversion, the micro-pores were generated in the grafted PMMA layer. The prepared micro-porous PE-g-PMMA separators showed an improved electrolyte uptake and ionic conductivity due to their improved affinity with a liquid electrolyte and the presence of pores in the grafted PMMA layer. The PE-g-PMMA separators exhibited a lower thermal shrinkage compared to the original PE separator. The PE-g-PMMA separators showed a better oxidation stability up to 5.0 V when compared to the original PE separator (4.5 V).
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2009.06.117