role of copper in drug-resistant murine and human tumors

Multidrug resistance (MDR) is still a major threat to successful clinical application of cancer chemotherapy. Copper plays an important role in biological systems, and copper is also involved in carcinogenesis. In the present investigation, we addressed the question whether metal copper might be inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2009-04, Vol.22 (2), p.377-384
Hauptverfasser: Majumder, S, Chatterjee, S, Pal, Smarajit, Biswas, J, Efferth, T, Choudhuri, Soumitra Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multidrug resistance (MDR) is still a major threat to successful clinical application of cancer chemotherapy. Copper plays an important role in biological systems, and copper is also involved in carcinogenesis. In the present investigation, we addressed the question whether metal copper might be involved in drug resistance of murine and human tumors. By means of atomic absorption spectroscopy, we determined serum copper concentrations. We found that the blood serum of tumor-bearing mice contained higher amounts of copper than healthy mice with tumors. Secondly, mice bearing doxorubicin-resistant Ehrlich ascites carcinoma- or cyclophosphamide-resistant Lewis lung carcinoma contained more copper in their serum than mice bearing the corresponding drug-sensitive parental tumors. Furthermore, the analysis of patients with breast cancer, colon carcinoma or lung cancer showed that the serum copper contents were higher in patients not responding to chemotherapy when compared to patients whose tumors responded to treatment. The copper levels in serum of healthy volunteers were lower than in cancer patients irrespective of their response to chemotherapy. Our results imply that the level of serum copper may be considered as a biomarker for treatment response.
ISSN:0966-0844
1572-8773
DOI:10.1007/s10534-008-9174-3