The Longest Minimum-Weight Path in a Complete Graph
We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about α* log n edges, where α* ≈ 3.5911 is the unique solut...
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2010-01, Vol.19 (1), p.1-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the minimum-weight path between any pair of nodes of the n-vertex complete graph in which the weights of the edges are i.i.d. exponentially distributed random variables. We show that the longest of these minimum-weight paths has about α* log n edges, where α* ≈ 3.5911 is the unique solution of the equation α log α − α = 1. This answers a question posed by Janson [8]. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548309990204 |