Rayleigh Mixture Model-Based Hidden Markov Modeling and Estimation of Noise in Noisy Speech Signals
In this paper, we propose a new statistical model for noise periodogram modeling and estimation. The proposed model is a hidden Markov model (HMM) with a Rayleigh mixture model (RMM) in each state. For this new model, we derive an expectation-maximization (EM) training algorithm and a minimum mean-s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on audio, speech, and language processing speech, and language processing, 2007-03, Vol.15 (3), p.901-917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a new statistical model for noise periodogram modeling and estimation. The proposed model is a hidden Markov model (HMM) with a Rayleigh mixture model (RMM) in each state. For this new model, we derive an expectation-maximization (EM) training algorithm and a minimum mean-square error (MMSE) noise periodogram estimator. It is shown that when compared to the Gaussian mixture model (GMM)-based HMM, the RMM-based HMM has less computationally complex EM iterations and gives a better fit of the noise periodograms when the mixture models has a low number of components. Furthermore, we propose a specialization of the proposed model, which is shown to provide better MMSE noise periodogram estimates than any other of the tested HMM initializations for cyclo-stationary noise types |
---|---|
ISSN: | 1558-7916 1558-7924 |
DOI: | 10.1109/TASL.2006.885240 |