Suppression of Higher-Order Modes by Segmented Core Doping in Rod-Type Photonic Crystal Fibers
A large mode area Yb-doped rod-type photonic crystal fiber design with a low refractive index ring in the core is proposed to provide an improved suppression of the first higher-order mode compared to the case of uniform core doping, in a way which is more robust against fluctuations in the refracti...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2009-11, Vol.27 (22), p.4935-4942 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large mode area Yb-doped rod-type photonic crystal fiber design with a low refractive index ring in the core is proposed to provide an improved suppression of the first higher-order mode compared to the case of uniform core doping, in a way which is more robust against fluctuations in the refractive index value. After applying a scalar step-index model for a first parameter optimization of the proposed design, a full-vector modal solver based on the finite element method has been exploited to analyze the guided mode overlap and effective area for the most promising fibers identified. Finally, a spatial and spectral amplifier model has been considered to study the gain competition among the fundamental and the first higher-order mode guided in the Yb-doped rod-type fibers. Results have demonstrated the effectiveness of the low refractive index ring in suppressing the higher-order mode, thus providing an effectively single-mode behavior for the rod-type fibers. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2009.2026494 |