Electrospinning of carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles
Polyacrylonitrile (PAN)-based carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles were prepared by using the electrospinning technique for potential fuel cell applications. The solution was prepared by adding pre-solved catalytic precursor into PAN/DMF solution. The effect of PAN and cat...
Gespeichert in:
Veröffentlicht in: | Journal of materials processing technology 2010-02, Vol.210 (3), p.451-455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Polyacrylonitrile (PAN)-based carbon nanofiber supported Fe/Co/Ni ternary alloy nanoparticles were prepared by using the electrospinning technique for potential fuel cell applications. The solution was prepared by adding pre-solved catalytic precursor into PAN/DMF solution. The effect of PAN and catalyst precursor concentration on solution properties (viscosity and conductivity) and heat stabilization temperature has been investigated. Electrospun nanofibers were characterized by field emission scanning electron microscope, transmission electron microscope, energy dispersive spectrometer and X-ray diffractometer. It has been found that ternary nanoparticle size is in the range of 5–115
nm (average: 20
nm) and is a crystal alloy of Fe, Co and Ni. Also, TEM results demonstrate that in some regions metal nanoparticles tend to agglomerate into larger particles mainly due to the non-uniform distribution of nanoparticles in as-spun condition. PAN-derived carbon nanofiber mean diameter was measured as 200
nm by varying from 40
nm to 420
nm. |
---|---|
ISSN: | 0924-0136 |
DOI: | 10.1016/j.jmatprotec.2009.10.006 |