Generalized Euler constants

We study the distribution of a family $\{\g(\P)\}$ of generalized Euler constants arising from integers sieved by finite sets of primes $\P$. For $\P=\P_r$, the set of the first r primes, $\g(\P_r) \to \exp(-\g)$ as r → ∞. Calculations suggest that $\g(\P_r)$ is monotonic in r, but we prove it is no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2008-07, Vol.145 (1), p.27-41
Hauptverfasser: DIAMOND, HAROLD G., FORD, KEVIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the distribution of a family $\{\g(\P)\}$ of generalized Euler constants arising from integers sieved by finite sets of primes $\P$. For $\P=\P_r$, the set of the first r primes, $\g(\P_r) \to \exp(-\g)$ as r → ∞. Calculations suggest that $\g(\P_r)$ is monotonic in r, but we prove it is not. Also, we show a connection between the distribution of $\g(\P_r) - \exp(-\g)$ and the Riemann hypothesis.
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004108001187