A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems

In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 1988-08, Vol.22 (8), p.694-716
Hauptverfasser: Shi, Guimin, Bezine, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 8
container_start_page 694
container_title Journal of composite materials
container_volume 22
creator Shi, Guimin
Bezine, Gerard
description In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an infinite plate corresponding to the problem of interest. By a sim ple discretization procedure with straight elements for the boundary, and constant assump tion for the unknown boundary functions, two boundary integral equations are obtained in the matrix form. Several computational examples concerning orthotropic plate bending problems are presented. The numerical results obtained by our method as compared with some analytical results show that the present numerical scheme is a versatile tool which gives a satisfactory accuracy.
doi_str_mv 10.1177/002199838802200801
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36340899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_002199838802200801</sage_id><sourcerecordid>36340899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-a94d86c4147d9da57c9503280c1ceab2f109c4a0546a25e0a544feaf711dbb5f3</originalsourceid><addsrcrecordid>eNqNkcFLwzAUxoMoOKf_gKccxFvdS5o0yXEbbgoDhyh4K2mazo4umUl78L-3ZcOLoJ4evPf7Ph7fh9A1gTtChJgAUKKUTKUESgEkkBM0IjyFRKj07RSNBiAZiHN0EeMWAARh2Qg9T_HSOht0g2e-c6UOn_jRtXYzbBY-7LpGt7V3uPIBt-8WT10dfRv8vjZ43d8snllX1m6D18EXjd3FS3RW6Sbaq-Mco9fF_cv8IVk9LR_n01ViGKg20YqVMjOMMFGqUnNhFIeUSjDEWF3QioAyTANnmabcguaMVVZXgpCyKHiVjtHtwXcf_EdnY5vv6mhs02hnfRfzNEsZSKX-BCmTijLK_gUCz0QP0gNogo8x2Crfh3rXZ5cTyIdC8p-F9KKbo7uORjdV0M7U8VspgIv-2R6bHLCoNzbf-i64PsXfjL8AwlqXLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24890567</pqid></control><display><type>article</type><title>A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems</title><source>SAGE Complete</source><creator>Shi, Guimin ; Bezine, Gerard</creator><creatorcontrib>Shi, Guimin ; Bezine, Gerard</creatorcontrib><description>In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an infinite plate corresponding to the problem of interest. By a sim ple discretization procedure with straight elements for the boundary, and constant assump tion for the unknown boundary functions, two boundary integral equations are obtained in the matrix form. Several computational examples concerning orthotropic plate bending problems are presented. The numerical results obtained by our method as compared with some analytical results show that the present numerical scheme is a versatile tool which gives a satisfactory accuracy.</description><identifier>ISSN: 0021-9983</identifier><identifier>EISSN: 1530-793X</identifier><identifier>DOI: 10.1177/002199838802200801</identifier><identifier>CODEN: JCOMBI</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Journal of composite materials, 1988-08, Vol.22 (8), p.694-716</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-a94d86c4147d9da57c9503280c1ceab2f109c4a0546a25e0a544feaf711dbb5f3</citedby><cites>FETCH-LOGICAL-c409t-a94d86c4147d9da57c9503280c1ceab2f109c4a0546a25e0a544feaf711dbb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/002199838802200801$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/002199838802200801$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7057993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Guimin</creatorcontrib><creatorcontrib>Bezine, Gerard</creatorcontrib><title>A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems</title><title>Journal of composite materials</title><description>In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an infinite plate corresponding to the problem of interest. By a sim ple discretization procedure with straight elements for the boundary, and constant assump tion for the unknown boundary functions, two boundary integral equations are obtained in the matrix form. Several computational examples concerning orthotropic plate bending problems are presented. The numerical results obtained by our method as compared with some analytical results show that the present numerical scheme is a versatile tool which gives a satisfactory accuracy.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0021-9983</issn><issn>1530-793X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkcFLwzAUxoMoOKf_gKccxFvdS5o0yXEbbgoDhyh4K2mazo4umUl78L-3ZcOLoJ4evPf7Ph7fh9A1gTtChJgAUKKUTKUESgEkkBM0IjyFRKj07RSNBiAZiHN0EeMWAARh2Qg9T_HSOht0g2e-c6UOn_jRtXYzbBY-7LpGt7V3uPIBt-8WT10dfRv8vjZ43d8snllX1m6D18EXjd3FS3RW6Sbaq-Mco9fF_cv8IVk9LR_n01ViGKg20YqVMjOMMFGqUnNhFIeUSjDEWF3QioAyTANnmabcguaMVVZXgpCyKHiVjtHtwXcf_EdnY5vv6mhs02hnfRfzNEsZSKX-BCmTijLK_gUCz0QP0gNogo8x2Crfh3rXZ5cTyIdC8p-F9KKbo7uORjdV0M7U8VspgIv-2R6bHLCoNzbf-i64PsXfjL8AwlqXLw</recordid><startdate>19880801</startdate><enddate>19880801</enddate><creator>Shi, Guimin</creator><creator>Bezine, Gerard</creator><general>SAGE Publications</general><general>Technomic</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19880801</creationdate><title>A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems</title><author>Shi, Guimin ; Bezine, Gerard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-a94d86c4147d9da57c9503280c1ceab2f109c4a0546a25e0a544feaf711dbb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Guimin</creatorcontrib><creatorcontrib>Bezine, Gerard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Guimin</au><au>Bezine, Gerard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems</atitle><jtitle>Journal of composite materials</jtitle><date>1988-08-01</date><risdate>1988</risdate><volume>22</volume><issue>8</issue><spage>694</spage><epage>716</epage><pages>694-716</pages><issn>0021-9983</issn><eissn>1530-793X</eissn><coden>JCOMBI</coden><abstract>In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an infinite plate corresponding to the problem of interest. By a sim ple discretization procedure with straight elements for the boundary, and constant assump tion for the unknown boundary functions, two boundary integral equations are obtained in the matrix form. Several computational examples concerning orthotropic plate bending problems are presented. The numerical results obtained by our method as compared with some analytical results show that the present numerical scheme is a versatile tool which gives a satisfactory accuracy.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/002199838802200801</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9983
ispartof Journal of composite materials, 1988-08, Vol.22 (8), p.694-716
issn 0021-9983
1530-793X
language eng
recordid cdi_proquest_miscellaneous_36340899
source SAGE Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20General%20Boundary%20Integral%20Formulation%20for%20the%20Anisotropic%20Plate%20Bending%20Problems&rft.jtitle=Journal%20of%20composite%20materials&rft.au=Shi,%20Guimin&rft.date=1988-08-01&rft.volume=22&rft.issue=8&rft.spage=694&rft.epage=716&rft.pages=694-716&rft.issn=0021-9983&rft.eissn=1530-793X&rft.coden=JCOMBI&rft_id=info:doi/10.1177/002199838802200801&rft_dat=%3Cproquest_cross%3E36340899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=24890567&rft_id=info:pmid/&rft_sage_id=10.1177_002199838802200801&rfr_iscdi=true