A General Boundary Integral Formulation for the Anisotropic Plate Bending Problems

In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of composite materials 1988-08, Vol.22 (8), p.694-716
Hauptverfasser: Shi, Guimin, Bezine, Gerard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new direct boundary integral element method is presented for the analy sis of Kirchhoff's anisotropic plate bending problems. The two boundary integral equations are derived from the generalized Rayleigh-Green identity after introducing the fundamen tal singular solution of an infinite plate corresponding to the problem of interest. By a sim ple discretization procedure with straight elements for the boundary, and constant assump tion for the unknown boundary functions, two boundary integral equations are obtained in the matrix form. Several computational examples concerning orthotropic plate bending problems are presented. The numerical results obtained by our method as compared with some analytical results show that the present numerical scheme is a versatile tool which gives a satisfactory accuracy.
ISSN:0021-9983
1530-793X
DOI:10.1177/002199838802200801