Cluster complexes via semi-invariants

We define and study virtual representation spaces for vectors having both positive and negative dimensions at the vertices of a quiver without oriented cycles. We consider the natural semi-invariants on these spaces which we call virtual semi-invariants and prove that they satisfy the three basic th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2009-07, Vol.145 (4), p.1001-1034
Hauptverfasser: Igusa, Kiyoshi, Orr, Kent, Todorov, Gordana, Weyman, Jerzy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define and study virtual representation spaces for vectors having both positive and negative dimensions at the vertices of a quiver without oriented cycles. We consider the natural semi-invariants on these spaces which we call virtual semi-invariants and prove that they satisfy the three basic theorems: the first fundamental theorem, the saturation theorem and the canonical decomposition theorem. In the special case of Dynkin quivers with n vertices, this gives the fundamental interrelationship between supports of the semi-invariants and the tilting triangulation of the (n−1)-sphere.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X09004151