Cluster complexes via semi-invariants
We define and study virtual representation spaces for vectors having both positive and negative dimensions at the vertices of a quiver without oriented cycles. We consider the natural semi-invariants on these spaces which we call virtual semi-invariants and prove that they satisfy the three basic th...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2009-07, Vol.145 (4), p.1001-1034 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define and study virtual representation spaces for vectors having both positive and negative dimensions at the vertices of a quiver without oriented cycles. We consider the natural semi-invariants on these spaces which we call virtual semi-invariants and prove that they satisfy the three basic theorems: the first fundamental theorem, the saturation theorem and the canonical decomposition theorem. In the special case of Dynkin quivers with n vertices, this gives the fundamental interrelationship between supports of the semi-invariants and the tilting triangulation of the (n−1)-sphere. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X09004151 |