Cassini RADAR Sequence Planning and Instrument Performance

The Cassini RADAR is a multimode instrument used to map the surface of Titan, the atmosphere of Saturn, the Saturn ring system, and to explore the properties of the icy satellites. Four different active mode bandwidths and a passive radiometer mode provide a wide range of flexibility in taking measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2009-06, Vol.47 (6), p.1777-1795
Hauptverfasser: West, R.D., Anderson, Y., Boehmer, R., Borgarelli, L., Callahan, P., Elachi, C., Yonggyu Gim, Hamilton, G., Hensley, S., Janssen, M.A., Johnson, W., Kelleher, K., Lorenz, R., Ostro, S., Roth, L., Shaffer, S., Stiles, B., Wall, S., Wye, L.C., Zebker, H.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cassini RADAR is a multimode instrument used to map the surface of Titan, the atmosphere of Saturn, the Saturn ring system, and to explore the properties of the icy satellites. Four different active mode bandwidths and a passive radiometer mode provide a wide range of flexibility in taking measurements. The scatterometer mode is used for real aperture imaging of Titan, high-altitude (around 20 000 km) synthetic aperture imaging of Titan and Iapetus, and long range (up to 700 000 km) detection of disk integrated albedos for satellites in the Saturn system. Two SAR modes are used for high- and medium-resolution (300-1000 m) imaging of Titan's surface during close flybys. A high-bandwidth altimeter mode is used for topographic profiling in selected areas with a range resolution of about 35 m. The passive radiometer mode is used to map emission from Titan, from Saturn's atmosphere, from the rings, and from the icy satellites. Repeated scans with differing polarizations using both active and passive data provide data that can usefully constrain models of surface composition and structure. The radar and radiometer receivers show very good stability, and calibration observations have provided an absolute calibration good to about 1.3 dB. Relative uncertainties within a pass and between passes can be even smaller. Data are currently being processed and delivered to the planetary data system at quarterly intervals one year after being acquired.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2008.2007217