Existence and asymptotic behavior of positive solutions for a variable exponent elliptic system without variational structure
We mainly consider the existence and asymptotic behavior of positive solutions of the following system { − Δ p ( x ) u = λ p ( x ) ( u α ( x ) v γ ( x ) + h 1 ( x ) ) in Ω , − Δ q ( x ) v = λ q ( x ) ( u δ ( x ) v β ( x ) + h 2 ( x ) ) in Ω , u = v = 0 on ∂ Ω , where Ω ⊂ R N is a bounded domai...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2010, Vol.72 (1), p.354-363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We mainly consider the existence and asymptotic behavior of positive solutions of the following system
{
−
Δ
p
(
x
)
u
=
λ
p
(
x
)
(
u
α
(
x
)
v
γ
(
x
)
+
h
1
(
x
)
)
in
Ω
,
−
Δ
q
(
x
)
v
=
λ
q
(
x
)
(
u
δ
(
x
)
v
β
(
x
)
+
h
2
(
x
)
)
in
Ω
,
u
=
v
=
0
on
∂
Ω
,
where
Ω
⊂
R
N
is a bounded domain with
C
2
boundary
∂
Ω
,
1
<
p
(
x
)
,
q
(
x
)
∈
C
1
(
Ω
¯
)
are functions, and
−
Δ
p
(
x
)
u
=
−
div
(
|
∇
u
|
p
(
x
)
−
2
∇
u
)
is called
p
(
x
)
-Laplacian. When
α
,
β
,
γ
,
δ
satisfy some conditions and
λ
is large enough, we proved the existence of a positive solution.
In particular, we do not assume any symmetric condition, and we do not assume any sign condition on
h
1
(
0
)
and
h
2
(
0
)
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2009.06.069 |