Existence and asymptotic behavior of positive solutions for a variable exponent elliptic system without variational structure

We mainly consider the existence and asymptotic behavior of positive solutions of the following system { − Δ p ( x ) u = λ p ( x ) ( u α ( x ) v γ ( x ) + h 1 ( x ) )  in  Ω , − Δ q ( x ) v = λ q ( x ) ( u δ ( x ) v β ( x ) + h 2 ( x ) )  in  Ω , u = v = 0  on  ∂ Ω , where Ω ⊂ R N is a bounded domai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2010, Vol.72 (1), p.354-363
Hauptverfasser: Zhang, Qihu, Qiu, Zhimei, Dong, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We mainly consider the existence and asymptotic behavior of positive solutions of the following system { − Δ p ( x ) u = λ p ( x ) ( u α ( x ) v γ ( x ) + h 1 ( x ) )  in  Ω , − Δ q ( x ) v = λ q ( x ) ( u δ ( x ) v β ( x ) + h 2 ( x ) )  in  Ω , u = v = 0  on  ∂ Ω , where Ω ⊂ R N is a bounded domain with C 2 boundary ∂ Ω , 1 < p ( x ) , q ( x ) ∈ C 1 ( Ω ¯ ) are functions, and − Δ p ( x ) u = − div ( | ∇ u | p ( x ) − 2 ∇ u ) is called p ( x ) -Laplacian. When α , β , γ , δ satisfy some conditions and λ is large enough, we proved the existence of a positive solution. In particular, we do not assume any symmetric condition, and we do not assume any sign condition on h 1 ( 0 ) and h 2 ( 0 ) .
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2009.06.069