A 1.6 GB/s DDR2 128 Mb Chain FeRAM With Scalable Octal Bitline and Sensing Schemes
An 87.7 mm 2 1.6 GB/s 128 Mb chain FeRAM with 130 nm 4-metal CMOS process is demonstrated. In addition to small bitline capacitance inherent to chain FeRAM architecture, three new FeRAM scaling techniques - octal bitline architecture, small parasitic capacitance sensing scheme, and dual metal platel...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2010-01, Vol.45 (1), p.142-152 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An 87.7 mm 2 1.6 GB/s 128 Mb chain FeRAM with 130 nm 4-metal CMOS process is demonstrated. In addition to small bitline capacitance inherent to chain FeRAM architecture, three new FeRAM scaling techniques - octal bitline architecture, small parasitic capacitance sensing scheme, and dual metal plateline scheme - reduce bitline capacitance from 100 fF to 60 fF. As a result, a cell signal of ±220 mV is achieved even with the small cell size of 0.252 ¿m 2 . An 800 Mb/s/pin read/write bandwidth at 400 MHz clock is realized by installing SDRAM compatible DDR2 interface, and performance is verified by simulation. The internal power-line bounce noise due to 400 MHz clock operation is suppressed to less than 50 mV by an event-driven current driver, which supplies several hundreds of mA of current within 2 ns response. The precise timing and voltage controls are achieved by using the data stored in a compact FeRAM-fuse, which consists of extra FeRAM memory cells placed in edge of normal array instead of conventional laser fuse links. This configuration minimizes area penalty to 0.2% without cell signal degradation. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2009.2034414 |