Bottleneck Routing Games in Communication Networks

We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2007-08, Vol.25 (6), p.1173-1179
Hauptverfasser: Banner, R., Orda, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 6
container_start_page 1173
container_title IEEE journal on selected areas in communications
container_volume 25
creator Banner, R.
Orda, A.
description We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i.e., system) objective is to optimize the performance of the worst element in the network (i.e., the network bottleneck). Although we show that such "bottleneck" routing games appear in a variety of practical scenarios, they have not been considered yet. Accordingly, we study their properties, considering two routing scenarios, namely when a user can split its traffic over more than one path (splittable bottleneck game) and when it cannot (unsplittable bottleneck game). First, we prove that, for both splittable and unsplittable bottleneck games, there is a (not necessarily unique) Nash equilibrium. Then, we consider the rate of convergence to a Nash equilibrium in each game. Finally, we investigate the efficiency of the Nash equilibria in both games with respect to the social optimum; specifically, while for both games we show that the price of anarchy is unbounded, we identify for each game conditions under which Nash equilibria are socially optimal.
doi_str_mv 10.1109/JSAC.2007.070811
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_36298663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4278417</ieee_id><sourcerecordid>36298663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6357f57f677f4c5777b4f4ecff1ab0c7a3ea1244caf6ddc917a72b8d54bd39973</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7eBS_Fg3jpmq9m0uNadFUWBT_OIU0T6W7brE2L-O9tqXjwIAzM5XnfYR6ETgleEILTq4eXZbagGMMCA5aE7KEZSRIZY4zlPpphYCyWQMQhOgphgzHhXNIZote-6yrbWLONnn3flc17tNK1DVHZRJmv674pje5K30SPtvv07TYcowOnq2BPfvYcvd3evGZ38fppdZ8t17HhgnaxYAm4YQSA4yYBgJw7bo1zROfYgGZWE8q50U4UhUkJaKC5LBKeFyxNgc3RxdS7a_1Hb0On6jIYW1W6sb4PigmaSiHYAF7-CxIBhALINB3Q8z_oxvdtM7yhpOCYSQLjYTxBpvUhtNapXVvWuv1SBKtRthplq1G2mmQPkbMpUlprf3FOQXIC7Bv8TnmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864038177</pqid></control><display><type>article</type><title>Bottleneck Routing Games in Communication Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Banner, R. ; Orda, A.</creator><creatorcontrib>Banner, R. ; Orda, A.</creatorcontrib><description>We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i.e., system) objective is to optimize the performance of the worst element in the network (i.e., the network bottleneck). Although we show that such "bottleneck" routing games appear in a variety of practical scenarios, they have not been considered yet. Accordingly, we study their properties, considering two routing scenarios, namely when a user can split its traffic over more than one path (splittable bottleneck game) and when it cannot (unsplittable bottleneck game). First, we prove that, for both splittable and unsplittable bottleneck games, there is a (not necessarily unique) Nash equilibrium. Then, we consider the rate of convergence to a Nash equilibrium in each game. Finally, we investigate the efficiency of the Nash equilibria in both games with respect to the social optimum; specifically, while for both games we show that the price of anarchy is unbounded, we identify for each game conditions under which Nash equilibria are socially optimal.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2007.070811</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Batteries ; Cities and towns ; Communication networks ; Communication system control ; Communications networks ; Computer networks ; Convergence ; Economic models ; Game theory ; Games ; Large-scale systems ; Marketing ; Nash equilibrium ; Networks ; Optimization ; Routing ; Routing (telecommunications) ; Studies ; Telecommunication traffic</subject><ispartof>IEEE journal on selected areas in communications, 2007-08, Vol.25 (6), p.1173-1179</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6357f57f677f4c5777b4f4ecff1ab0c7a3ea1244caf6ddc917a72b8d54bd39973</citedby><cites>FETCH-LOGICAL-c462t-6357f57f677f4c5777b4f4ecff1ab0c7a3ea1244caf6ddc917a72b8d54bd39973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4278417$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4278417$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Banner, R.</creatorcontrib><creatorcontrib>Orda, A.</creatorcontrib><title>Bottleneck Routing Games in Communication Networks</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i.e., system) objective is to optimize the performance of the worst element in the network (i.e., the network bottleneck). Although we show that such "bottleneck" routing games appear in a variety of practical scenarios, they have not been considered yet. Accordingly, we study their properties, considering two routing scenarios, namely when a user can split its traffic over more than one path (splittable bottleneck game) and when it cannot (unsplittable bottleneck game). First, we prove that, for both splittable and unsplittable bottleneck games, there is a (not necessarily unique) Nash equilibrium. Then, we consider the rate of convergence to a Nash equilibrium in each game. Finally, we investigate the efficiency of the Nash equilibria in both games with respect to the social optimum; specifically, while for both games we show that the price of anarchy is unbounded, we identify for each game conditions under which Nash equilibria are socially optimal.</description><subject>Batteries</subject><subject>Cities and towns</subject><subject>Communication networks</subject><subject>Communication system control</subject><subject>Communications networks</subject><subject>Computer networks</subject><subject>Convergence</subject><subject>Economic models</subject><subject>Game theory</subject><subject>Games</subject><subject>Large-scale systems</subject><subject>Marketing</subject><subject>Nash equilibrium</subject><subject>Networks</subject><subject>Optimization</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Studies</subject><subject>Telecommunication traffic</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LxDAQhoMouK7eBS_Fg3jpmq9m0uNadFUWBT_OIU0T6W7brE2L-O9tqXjwIAzM5XnfYR6ETgleEILTq4eXZbagGMMCA5aE7KEZSRIZY4zlPpphYCyWQMQhOgphgzHhXNIZote-6yrbWLONnn3flc17tNK1DVHZRJmv674pje5K30SPtvv07TYcowOnq2BPfvYcvd3evGZ38fppdZ8t17HhgnaxYAm4YQSA4yYBgJw7bo1zROfYgGZWE8q50U4UhUkJaKC5LBKeFyxNgc3RxdS7a_1Hb0On6jIYW1W6sb4PigmaSiHYAF7-CxIBhALINB3Q8z_oxvdtM7yhpOCYSQLjYTxBpvUhtNapXVvWuv1SBKtRthplq1G2mmQPkbMpUlprf3FOQXIC7Bv8TnmA</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Banner, R.</creator><creator>Orda, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20070801</creationdate><title>Bottleneck Routing Games in Communication Networks</title><author>Banner, R. ; Orda, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6357f57f677f4c5777b4f4ecff1ab0c7a3ea1244caf6ddc917a72b8d54bd39973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Batteries</topic><topic>Cities and towns</topic><topic>Communication networks</topic><topic>Communication system control</topic><topic>Communications networks</topic><topic>Computer networks</topic><topic>Convergence</topic><topic>Economic models</topic><topic>Game theory</topic><topic>Games</topic><topic>Large-scale systems</topic><topic>Marketing</topic><topic>Nash equilibrium</topic><topic>Networks</topic><topic>Optimization</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Studies</topic><topic>Telecommunication traffic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banner, R.</creatorcontrib><creatorcontrib>Orda, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Banner, R.</au><au>Orda, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bottleneck Routing Games in Communication Networks</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2007-08-01</date><risdate>2007</risdate><volume>25</volume><issue>6</issue><spage>1173</spage><epage>1179</epage><pages>1173-1179</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i.e., system) objective is to optimize the performance of the worst element in the network (i.e., the network bottleneck). Although we show that such "bottleneck" routing games appear in a variety of practical scenarios, they have not been considered yet. Accordingly, we study their properties, considering two routing scenarios, namely when a user can split its traffic over more than one path (splittable bottleneck game) and when it cannot (unsplittable bottleneck game). First, we prove that, for both splittable and unsplittable bottleneck games, there is a (not necessarily unique) Nash equilibrium. Then, we consider the rate of convergence to a Nash equilibrium in each game. Finally, we investigate the efficiency of the Nash equilibria in both games with respect to the social optimum; specifically, while for both games we show that the price of anarchy is unbounded, we identify for each game conditions under which Nash equilibria are socially optimal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2007.070811</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2007-08, Vol.25 (6), p.1173-1179
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_miscellaneous_36298663
source IEEE Electronic Library (IEL)
subjects Batteries
Cities and towns
Communication networks
Communication system control
Communications networks
Computer networks
Convergence
Economic models
Game theory
Games
Large-scale systems
Marketing
Nash equilibrium
Networks
Optimization
Routing
Routing (telecommunications)
Studies
Telecommunication traffic
title Bottleneck Routing Games in Communication Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bottleneck%20Routing%20Games%20in%20Communication%20Networks&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Banner,%20R.&rft.date=2007-08-01&rft.volume=25&rft.issue=6&rft.spage=1173&rft.epage=1179&rft.pages=1173-1179&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2007.070811&rft_dat=%3Cproquest_RIE%3E36298663%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864038177&rft_id=info:pmid/&rft_ieee_id=4278417&rfr_iscdi=true