Bottleneck Routing Games in Communication Networks

We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2007-08, Vol.25 (6), p.1173-1179
Hauptverfasser: Banner, R., Orda, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element; the social (i.e., system) objective is to optimize the performance of the worst element in the network (i.e., the network bottleneck). Although we show that such "bottleneck" routing games appear in a variety of practical scenarios, they have not been considered yet. Accordingly, we study their properties, considering two routing scenarios, namely when a user can split its traffic over more than one path (splittable bottleneck game) and when it cannot (unsplittable bottleneck game). First, we prove that, for both splittable and unsplittable bottleneck games, there is a (not necessarily unique) Nash equilibrium. Then, we consider the rate of convergence to a Nash equilibrium in each game. Finally, we investigate the efficiency of the Nash equilibria in both games with respect to the social optimum; specifically, while for both games we show that the price of anarchy is unbounded, we identify for each game conditions under which Nash equilibria are socially optimal.
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2007.070811