Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells

Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010-04, Vol.195 (7), p.1841-1844
Hauptverfasser: Feng, Yujie, Yang, Qiao, Wang, Xin, Logan, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon brush electrodes have been used to provide high surface areas for bacterial growth and high power densities in microbial fuel cells (MFCs). A high-temperature ammonia gas treatment has been used to enhance power generation, but less energy-intensive methods are needed for treating these electrodes in practice. Three different treatment methods are examined here for enhancing power generation of carbon fiber brushes: acid soaking (CF-A), heating (CF-H), and a combination of both processes (CF-AH). The combined heat and acid treatment improve power production to 1370 mW m −2, which is 34% larger than the untreated control (CF-C, 1020 mW m −2). This power density is 25% higher than using only acid treatment (1100 mW m −2) and 7% higher than that using only heat treatment (1280 mW m −2). XPS analysis of the treated and untreated anode materials indicates that power increases are related to higher N1s/C1s ratios and a lower C–O composition. These findings demonstrate efficient and simple methods for improving power generation using graphite fiber brushes, and provide insight into reasons for improving performance that may help to further increase power through other graphite fiber modifications.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2009.10.030