Structural properties of materials created through freeze casting

Upon freezing of an aqueous suspension of colloidal particles, ice platelets or dendrites with high aspect ratios are formed that engulf or reject the particles, depending on their size and the velocity of the advancing ice front. As the particles are pushed between the growing crystals, concentrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2010, Vol.58 (2), p.709-715
Hauptverfasser: Barr, Stephen A., Luijten, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upon freezing of an aqueous suspension of colloidal particles, ice platelets or dendrites with high aspect ratios are formed that engulf or reject the particles, depending on their size and the velocity of the advancing ice front. As the particles are pushed between the growing crystals, concentrated regions of colloidal particles are formed. Recent experiments have exploited this to create strong, porous materials with a well-controlled microstructure. We investigate this process by means of molecular dynamics simulations, focusing on the effect of the ice front velocity on the structure of the resulting material. We develop a model that accounts for particle engulfment or rejection by the ice front, and study both columnar and lamellar geometries. The degree of order of the resulting solid and the thickness of the walls surrounding the pores are shown to be determined by front velocity and initial particle concentration in the suspension.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2009.09.050