Simulation of stress concentration in Mg alloys using the crystal plasticity finite element method

A crystal plasticity finite element method (CPFEM), considering both crystallographic slip and deformation twinning, was developed to simulate the spatial stress concentration in AZ31 Mg alloys during in-plane compression. A predominant twin reorientation (PTR) model was successfully implemented to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2010, Vol.58 (1), p.320-329
Hauptverfasser: Choi, S.-H., Kim, D.H., Park, S.S., You, B.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A crystal plasticity finite element method (CPFEM), considering both crystallographic slip and deformation twinning, was developed to simulate the spatial stress concentration in AZ31 Mg alloys during in-plane compression. A predominant twin reorientation (PTR) model was successfully implemented to capture grain reorientation due to deformation twinning in twin-dominated deformation. By using the direct mapping technique for electron backscatter diffraction (EBSD) data, CPFEM can capture the heterogeneity of stress concentration at the grain boundaries in AZ31 Mg alloys during in-plane compression. The model demonstrated that deformation twinning enhances the local stress concentration at the grain boundaries between untwinned and twinned grains.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2009.09.010