Subsurface injection of dissolved ferric chloride to form a chemical barrier: laboratory investigations

A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO3), it may be via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground Water 1996-01, Vol.34 (1), p.75-83
Hauptverfasser: Morrison, S.J. (U.S. Department of Energy Grand Junction Projects Office, Grand Junction, CO.), Spangler, R.R, Morris, S.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO3), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. We introduced a ferric chloride solution (1,345 mg/l[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 X 10(7) m) and 0.01(1.0 X 10(-7) m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride
ISSN:0017-467X
1745-6584
DOI:10.1111/j.1745-6584.1996.tb01867.x