Sheet metal forming limit prediction based on plastic deformation energy

For sheet metals, the endurance to fracture under different strain paths may be different. Based on plastic deformation energy, the sheet metal forming limit is calculated, and the relationship model between maximum allowable integral value of the general plastic work criterion and the strain path i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2010-01, Vol.210 (2), p.315-322
Hauptverfasser: Chen, Jieshi, Zhou, Xianbin, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For sheet metals, the endurance to fracture under different strain paths may be different. Based on plastic deformation energy, the sheet metal forming limit is calculated, and the relationship model between maximum allowable integral value of the general plastic work criterion and the strain path is built. In addition, the strain-hardening exponent, anisotropy coefficient and the initial thickness of the material are also taken into account to consider their effects on forming limit. In order to simplify the process of parameter determination, only uniaxial tension test is used to calculate the material property parameters and necessary limit strain, and the expression of the criterion is determined finally. Then the limit strains under other strain paths between uniaxial tension to equi-biaxial tension are predicted by the criterion combined with numerical simulation of the forming process. The criterion is also applied to limit strain prediction under bilinear strain path.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2009.09.017