Three-Dimensional Simulation on the Water Flow Field and Suspended Solids Concentration in the Rectangular Sedimentation Tank
A 3D computational fluid dynamics model for describing the water flow and suspended solids (SS) concentration distribution in a rectangular sedimentation tank is presented. The interfacial momentum transfer, buoyant forces, and the effect of sediment-induced density currents are considered. A convec...
Gespeichert in:
Veröffentlicht in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 2008-11, Vol.134 (11), p.902-911 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 3D computational fluid dynamics model for describing the water flow and suspended solids (SS) concentration distribution in a rectangular sedimentation tank is presented. The interfacial momentum transfer, buoyant forces, and the effect of sediment-induced density currents are considered. A convection-diffusion equation, which is extended to incorporate the sedimentation of activated sludge in the field of gravity, governed the mass transfer in the clarifier. The double-exponential law is used to describe the dependence of the settling velocity on the concentration. The results show that during the dynamic settling process of the sludge, the mud surface rose slowly, and a period of time later, the mud surface kept stability and reached dynamic equilibrium in the tank. The distribution of velocity along the
z
axis in the rectangular tank is not uniform, and the surface return flow is found. The turbulent kinetic energy is larger and dropped drastically in the inlet zone, while in the settling zone the turbulent kinetic energy is relatively small. Density current is formed, and the clear water zone, flocculation zone, lamella zone, and compression zone are found. Furthermore, under certain operational conditions, the influence of inlet baffle length on SS settling in the rectangular sedimentation tank is discussed. The prediction by the present model for liquid flow and SS concentration is confirmed by the experimental measurement in a rectangular sedimentation tank in Sweden reported by Larsen in 1977. |
---|---|
ISSN: | 0733-9372 1943-7870 |
DOI: | 10.1061/(ASCE)0733-9372(2008)134:11(902) |