Parallel approaches for singular value decomposition as applied to robotic manipulator jacobians
The system of equations that govern kinematically redundant robotic manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require a considerable amount of time to compute, thus a parallel SVD algorithm reducing execution time...
Gespeichert in:
Veröffentlicht in: | International journal of parallel programming 2002-02, Vol.30 (1), p.1-35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The system of equations that govern kinematically redundant robotic manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require a considerable amount of time to compute, thus a parallel SVD algorithm reducing execution time is sought. The approach employed here lends itself to parallelization by using Givens rotations and information from previous decompositions. The key contribution of this research is the presentation and implementation of parallel SVD algorithms to compute the SVD for a set of Jacobians that represent various different joint failure scenarios. Results from implementation of the algorithm on a MasPar MP-1, an IBM SP2, and the PASM prototype parallel computers are compared. |
---|---|
ISSN: | 0885-7458 1573-7640 |
DOI: | 10.1023/A:1013270420397 |