Parallel approaches for singular value decomposition as applied to robotic manipulator jacobians

The system of equations that govern kinematically redundant robotic manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require a considerable amount of time to compute, thus a parallel SVD algorithm reducing execution time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of parallel programming 2002-02, Vol.30 (1), p.1-35
Hauptverfasser: Braun, Tracy D, Ulrey, Renard, Maciejewski, Anthony A, Siegel, Howard Jay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The system of equations that govern kinematically redundant robotic manipulators is commonly solved by finding the singular value decomposition (SVD) of the corresponding Jacobian matrix. This can require a considerable amount of time to compute, thus a parallel SVD algorithm reducing execution time is sought. The approach employed here lends itself to parallelization by using Givens rotations and information from previous decompositions. The key contribution of this research is the presentation and implementation of parallel SVD algorithms to compute the SVD for a set of Jacobians that represent various different joint failure scenarios. Results from implementation of the algorithm on a MasPar MP-1, an IBM SP2, and the PASM prototype parallel computers are compared.
ISSN:0885-7458
1573-7640
DOI:10.1023/A:1013270420397