Prediction of clouds and rain using a z-coordinate nonhydrostatic model
The most common option for numerical models of the atmosphere is to use model layers following the surface of the earth, using a terrain-following vertical coordinate. The present paper investigates the forecast of clouds and precipitation using the z-coordinate nonhydrostatic version of the Lokalmo...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2006-12, Vol.134 (12), p.3625-3643 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most common option for numerical models of the atmosphere is to use model layers following the surface of the earth, using a terrain-following vertical coordinate. The present paper investigates the forecast of clouds and precipitation using the z-coordinate nonhydrostatic version of the Lokalmodell (LM-z). This model uses model layers that are parallel to the surface of the sphere and consequently intersect the orography. Physical processes are computed on a special grid, allowing adequate grid spacing even over high mountains. In other respects the model is identical to the nonhydrostatic terrain-following version of the LM, which in a number of European countries is used for operational mesoscale forecasting. The terrain-following version of the LM (LM-tf) is used for comparison with the forecasts of the LM-z. Terrain-following coordinates are accurate when the orography is shallow and smooth, while z-coordinate models need not satisfy this condition. Because the condition of smooth orography is rarely satisfied in reality, z-coordinate models should lead to a better representation of the atmospheric flow near mountains and consequently to a better representation of fog, low stratus, and precipitation. A number of real-data cases, computed with a grid spacing of 7 and 14 km, are investigated. A total of 39 real-data cases have been used to evaluate forecast scores. A rather systematic improvement of precipitation forecasts resulted in a substantial increase of threat scores. Furthermore, RMS verification against radiosondes showed an improvement of the 24-h forecast, both for wind and temperature. To investigate the possibility of flow separation at mountain tops, the flow in the lee of southern Italy was investigated. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/mwr3331.1 |