Probabilistic risk and uncertainty analysis for bioremediation of four chlorinated ethenes in groundwater

Groundwater contamination risk assessment for health-threatening compounds should benefit from a stochastic environmental risk assessment which considers the effects of biological, chemical, human behavioral, and physiological processes that involve elements of biotic and abiotic aquifer uncertainty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2007-04, Vol.21 (4), p.375-390
Hauptverfasser: Benekos, I D, Shoemaker, C A, Stedinger, J R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Groundwater contamination risk assessment for health-threatening compounds should benefit from a stochastic environmental risk assessment which considers the effects of biological, chemical, human behavioral, and physiological processes that involve elements of biotic and abiotic aquifer uncertainty, and human population variability. This paper couples a complex model of chemical degradation and transformation with movement in an aquifer undergoing bioremediation to generate a health risk analysis for different population cohorts in the community. A two-stage Monte Carlo simulation has separate stages for population variability and aquifer uncertainty yielding a computationally efficient and conceptually attractive algorithm. A hypothetical example illustrates how risk variance analysis can be conducted to determine the distribution of risk, and the relative impact of uncertainty and variability in different sets of parameters upon the variation of risk values for adults, adolescents, and children. The groundwater example considers a community water supply contaminated with chlorinated ethenes. Biodegradation pathways are enhanced by addition of butyrate. The results showed that the contribution of uncertainty to the risk variance is comparable to that of variability. Among the uncertain parameters considered, transmissivity accounted for the major part of the output variance. Children were the most susceptible and vulnerable population cohort. [PUBLICATION ABSTRACT]
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-006-0071-4