Puncture fracture in an aluminum beverage can

Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2010-02, Vol.37 (2), p.150-160
Hauptverfasser: Yoon, Jeong Whan, Cardoso, Rui P.R., Dick, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 2
container_start_page 150
container_title International journal of impact engineering
container_volume 37
creator Yoon, Jeong Whan
Cardoso, Rui P.R.
Dick, Robert E.
description Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.
doi_str_mv 10.1016/j.ijimpeng.2009.06.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36148876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X09001134</els_id><sourcerecordid>36148876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BelFb62Tpk2am7L4BQt6UPAW0nS6pLTZNWkX_Pdm6erVYWDm8My8vC8hVxQyCpTfdpnt7LBFt85yAJkBzwCKI7KglZApK0EekwUIVqSiYJ-n5CyEDoAKKGFB0rfJmXHymLRez4t1iY7dT4N105DUuEOv15gY7S7ISav7gJeHeU4-Hh_el8_p6vXpZXm_Sg0TbEzLQiBAaVopGBOAGrVkBuqWMSybpjYaaMuZLquaNSIvqARJedVUTZ0jjdg5uZn_bv3ma8IwqsEGg32vHW6moBinRVUJHkE-g8ZvQvDYqq23g_bfioLap6M69ZuO2qejgKuYTjy8PijoYHQfzTtjw991HquUZR65u5nDaHdn0atgLDqDjfVoRtVs7H9SPztkfdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36148876</pqid></control><display><type>article</type><title>Puncture fracture in an aluminum beverage can</title><source>Elsevier ScienceDirect Journals</source><creator>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</creator><creatorcontrib>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</creatorcontrib><description>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2009.06.004</identifier><identifier>CODEN: IJIED4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crack propagation ; Exact sciences and technology ; FEM ; Fracture mechanics (crack, fatigue, damage...) ; Fracture toughness ; Fundamental areas of phenomenology (including applications) ; Mechanical contact (friction...) ; Mechanical engineering. Machine design ; Physics ; Pressure vessel ; Puncture ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics</subject><ispartof>International journal of impact engineering, 2010-02, Vol.37 (2), p.150-160</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</citedby><cites>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0734743X09001134$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22225952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><creatorcontrib>Cardoso, Rui P.R.</creatorcontrib><creatorcontrib>Dick, Robert E.</creatorcontrib><title>Puncture fracture in an aluminum beverage can</title><title>International journal of impact engineering</title><description>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</description><subject>Applied sciences</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture toughness</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical contact (friction...)</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Pressure vessel</subject><subject>Puncture</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BelFb62Tpk2am7L4BQt6UPAW0nS6pLTZNWkX_Pdm6erVYWDm8My8vC8hVxQyCpTfdpnt7LBFt85yAJkBzwCKI7KglZApK0EekwUIVqSiYJ-n5CyEDoAKKGFB0rfJmXHymLRez4t1iY7dT4N105DUuEOv15gY7S7ISav7gJeHeU4-Hh_el8_p6vXpZXm_Sg0TbEzLQiBAaVopGBOAGrVkBuqWMSybpjYaaMuZLquaNSIvqARJedVUTZ0jjdg5uZn_bv3ma8IwqsEGg32vHW6moBinRVUJHkE-g8ZvQvDYqq23g_bfioLap6M69ZuO2qejgKuYTjy8PijoYHQfzTtjw991HquUZR65u5nDaHdn0atgLDqDjfVoRtVs7H9SPztkfdo</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Yoon, Jeong Whan</creator><creator>Cardoso, Rui P.R.</creator><creator>Dick, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Puncture fracture in an aluminum beverage can</title><author>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture toughness</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical contact (friction...)</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Pressure vessel</topic><topic>Puncture</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><creatorcontrib>Cardoso, Rui P.R.</creatorcontrib><creatorcontrib>Dick, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Jeong Whan</au><au>Cardoso, Rui P.R.</au><au>Dick, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Puncture fracture in an aluminum beverage can</atitle><jtitle>International journal of impact engineering</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><spage>150</spage><epage>160</epage><pages>150-160</pages><issn>0734-743X</issn><eissn>1879-3509</eissn><coden>IJIED4</coden><abstract>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2009.06.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2010-02, Vol.37 (2), p.150-160
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_miscellaneous_36148876
source Elsevier ScienceDirect Journals
subjects Applied sciences
Crack propagation
Exact sciences and technology
FEM
Fracture mechanics (crack, fatigue, damage...)
Fracture toughness
Fundamental areas of phenomenology (including applications)
Mechanical contact (friction...)
Mechanical engineering. Machine design
Physics
Pressure vessel
Puncture
Solid mechanics
Static elasticity (thermoelasticity...)
Steel design
Steel tanks and pressure vessels
boiler manufacturing
Structural and continuum mechanics
title Puncture fracture in an aluminum beverage can
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Puncture%20fracture%20in%20an%20aluminum%20beverage%20can&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Yoon,%20Jeong%20Whan&rft.date=2010-02-01&rft.volume=37&rft.issue=2&rft.spage=150&rft.epage=160&rft.pages=150-160&rft.issn=0734-743X&rft.eissn=1879-3509&rft.coden=IJIED4&rft_id=info:doi/10.1016/j.ijimpeng.2009.06.004&rft_dat=%3Cproquest_cross%3E36148876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36148876&rft_id=info:pmid/&rft_els_id=S0734743X09001134&rfr_iscdi=true