Puncture fracture in an aluminum beverage can
Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell struct...
Gespeichert in:
Veröffentlicht in: | International journal of impact engineering 2010-02, Vol.37 (2), p.150-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 2 |
container_start_page | 150 |
container_title | International journal of impact engineering |
container_volume | 37 |
creator | Yoon, Jeong Whan Cardoso, Rui P.R. Dick, Robert E. |
description | Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel. |
doi_str_mv | 10.1016/j.ijimpeng.2009.06.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36148876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X09001134</els_id><sourcerecordid>36148876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BelFb62Tpk2am7L4BQt6UPAW0nS6pLTZNWkX_Pdm6erVYWDm8My8vC8hVxQyCpTfdpnt7LBFt85yAJkBzwCKI7KglZApK0EekwUIVqSiYJ-n5CyEDoAKKGFB0rfJmXHymLRez4t1iY7dT4N105DUuEOv15gY7S7ISav7gJeHeU4-Hh_el8_p6vXpZXm_Sg0TbEzLQiBAaVopGBOAGrVkBuqWMSybpjYaaMuZLquaNSIvqARJedVUTZ0jjdg5uZn_bv3ma8IwqsEGg32vHW6moBinRVUJHkE-g8ZvQvDYqq23g_bfioLap6M69ZuO2qejgKuYTjy8PijoYHQfzTtjw991HquUZR65u5nDaHdn0atgLDqDjfVoRtVs7H9SPztkfdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36148876</pqid></control><display><type>article</type><title>Puncture fracture in an aluminum beverage can</title><source>Elsevier ScienceDirect Journals</source><creator>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</creator><creatorcontrib>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</creatorcontrib><description>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2009.06.004</identifier><identifier>CODEN: IJIED4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Crack propagation ; Exact sciences and technology ; FEM ; Fracture mechanics (crack, fatigue, damage...) ; Fracture toughness ; Fundamental areas of phenomenology (including applications) ; Mechanical contact (friction...) ; Mechanical engineering. Machine design ; Physics ; Pressure vessel ; Puncture ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Steel design ; Steel tanks and pressure vessels; boiler manufacturing ; Structural and continuum mechanics</subject><ispartof>International journal of impact engineering, 2010-02, Vol.37 (2), p.150-160</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</citedby><cites>FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0734743X09001134$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22225952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><creatorcontrib>Cardoso, Rui P.R.</creatorcontrib><creatorcontrib>Dick, Robert E.</creatorcontrib><title>Puncture fracture in an aluminum beverage can</title><title>International journal of impact engineering</title><description>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</description><subject>Applied sciences</subject><subject>Crack propagation</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fracture toughness</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanical contact (friction...)</subject><subject>Mechanical engineering. Machine design</subject><subject>Physics</subject><subject>Pressure vessel</subject><subject>Puncture</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Steel design</subject><subject>Steel tanks and pressure vessels; boiler manufacturing</subject><subject>Structural and continuum mechanics</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BelFb62Tpk2am7L4BQt6UPAW0nS6pLTZNWkX_Pdm6erVYWDm8My8vC8hVxQyCpTfdpnt7LBFt85yAJkBzwCKI7KglZApK0EekwUIVqSiYJ-n5CyEDoAKKGFB0rfJmXHymLRez4t1iY7dT4N105DUuEOv15gY7S7ISav7gJeHeU4-Hh_el8_p6vXpZXm_Sg0TbEzLQiBAaVopGBOAGrVkBuqWMSybpjYaaMuZLquaNSIvqARJedVUTZ0jjdg5uZn_bv3ma8IwqsEGg32vHW6moBinRVUJHkE-g8ZvQvDYqq23g_bfioLap6M69ZuO2qejgKuYTjy8PijoYHQfzTtjw991HquUZR65u5nDaHdn0atgLDqDjfVoRtVs7H9SPztkfdo</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Yoon, Jeong Whan</creator><creator>Cardoso, Rui P.R.</creator><creator>Dick, Robert E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Puncture fracture in an aluminum beverage can</title><author>Yoon, Jeong Whan ; Cardoso, Rui P.R. ; Dick, Robert E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-547e005cf973370eaea93c0bf33e5ddbca01f63a58b3d7241909168d8db2e1bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crack propagation</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fracture toughness</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanical contact (friction...)</topic><topic>Mechanical engineering. Machine design</topic><topic>Physics</topic><topic>Pressure vessel</topic><topic>Puncture</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Steel design</topic><topic>Steel tanks and pressure vessels; boiler manufacturing</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Jeong Whan</creatorcontrib><creatorcontrib>Cardoso, Rui P.R.</creatorcontrib><creatorcontrib>Dick, Robert E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Jeong Whan</au><au>Cardoso, Rui P.R.</au><au>Dick, Robert E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Puncture fracture in an aluminum beverage can</atitle><jtitle>International journal of impact engineering</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>37</volume><issue>2</issue><spage>150</spage><epage>160</epage><pages>150-160</pages><issn>0734-743X</issn><eissn>1879-3509</eissn><coden>IJIED4</coden><abstract>Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2009.06.004</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0734-743X |
ispartof | International journal of impact engineering, 2010-02, Vol.37 (2), p.150-160 |
issn | 0734-743X 1879-3509 |
language | eng |
recordid | cdi_proquest_miscellaneous_36148876 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Crack propagation Exact sciences and technology FEM Fracture mechanics (crack, fatigue, damage...) Fracture toughness Fundamental areas of phenomenology (including applications) Mechanical contact (friction...) Mechanical engineering. Machine design Physics Pressure vessel Puncture Solid mechanics Static elasticity (thermoelasticity...) Steel design Steel tanks and pressure vessels boiler manufacturing Structural and continuum mechanics |
title | Puncture fracture in an aluminum beverage can |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Puncture%20fracture%20in%20an%20aluminum%20beverage%20can&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Yoon,%20Jeong%20Whan&rft.date=2010-02-01&rft.volume=37&rft.issue=2&rft.spage=150&rft.epage=160&rft.pages=150-160&rft.issn=0734-743X&rft.eissn=1879-3509&rft.coden=IJIED4&rft_id=info:doi/10.1016/j.ijimpeng.2009.06.004&rft_dat=%3Cproquest_cross%3E36148876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36148876&rft_id=info:pmid/&rft_els_id=S0734743X09001134&rfr_iscdi=true |