Puncture fracture in an aluminum beverage can

Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2010-02, Vol.37 (2), p.150-160
Hauptverfasser: Yoon, Jeong Whan, Cardoso, Rui P.R., Dick, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Puncture can be defined as a dynamic contact between a foreign object and a container, which causes the wall of the container to fail. This failure can lead to either a leak or a rupture. In this work, a crack propagation method with multiple arbitrary crack paths in a three-dimensional shell structure is newly developed for the prediction of rupture in an aluminum beverage can. The suggested algorithm does not require global remeshing and there is no severe mesh dependency in the solution. The Enhanced Assumed Strain (EAS) method is used to improve the in-plane membrane behavior with one-point quadrature shell elements. The crack propagation is activated based on the CTOA (Crack Tip Opening Angle). The directions of the cracks are determined by the circumferential stress criterion. Mode-III (shearing mode) is also considered for the crack propagations. The predicted crack paths are in good agreement with experimental results. A fracture mechanics model to predict the critical rupture pressure is reviewed in the work. It is shown that the proposed algorithm can be successfully applied to the crack path prediction for the rupture of a pressure vessel.
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2009.06.004