Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type

A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t > 0 . By parabolic type we mean that the operator A is the infinitesimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008-12, Vol.69 (11), p.4025-4054
Hauptverfasser: Matsumoto, Toshitaka, Tanaka, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4054
container_issue 11
container_start_page 4025
container_title Nonlinear analysis
container_volume 69
creator Matsumoto, Toshitaka
Tanaka, Naoki
description A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t > 0 . By parabolic type we mean that the operator A is the infinitesimal generator of an analytic ( C 0 ) semigroup on a general Banach space X . The operator B is assumed to be locally continuous from a subset of Y into X , where Y is a Banach space which is contained in X and has a stronger norm defined through a fractional power of − A . The characterization is applied to the global solvability of the mixed problem for the complex Ginzburg–Landau equation.
doi_str_mv 10.1016/j.na.2007.10.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_36126878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X07007092</els_id><sourcerecordid>36126878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b426e75ff8cd04de2cf455feaf685139730957d6f9942153c5629071ebb0951a3</originalsourceid><addsrcrecordid>eNp1UE1v1DAUtBBILIU7R1_glq0dx3bCDVV8SStxoJV6s946z9Qrb5zaTtH21-OwVW-c3tfMPM0Q8p6zLWdcXR62E2xbxnQdt0zIF2TDey0a2XL5kmyYUG0jO3X7mrzJ-cAY41qoDTn8wqP_neIyZxodDdFCCCe683O2d7480jhjghJTppBztB4KjvSPL3c0V2bwE0Ki-BDDUnycKN4vsDb_1GZIsI_BW1pOM74lrxyEjO-e6gW5-frl-up7s_v57cfV511jhZSl2XetQi2d6-3IuhFb6zopHYJTveRi0IINUo_KDUNXvQkrVTswzXG_rwcO4oJ8POvOKd4vmIs5-mwxBJgwLtkIxVvV674C2RloU8w5oTNz8kdIJ8OZWUM1BzOBWUNdNzXUSvnwpA25JuUSTNbnZ17LeqkZW6U_nXFYjT54TCZbj5PF0Se0xYzR___JX645jbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>36126878</pqid></control><display><type>article</type><title>Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type</title><source>Elsevier ScienceDirect Journals</source><creator>Matsumoto, Toshitaka ; Tanaka, Naoki</creator><creatorcontrib>Matsumoto, Toshitaka ; Tanaka, Naoki</creatorcontrib><description>A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t &gt; 0 . By parabolic type we mean that the operator A is the infinitesimal generator of an analytic ( C 0 ) semigroup on a general Banach space X . The operator B is assumed to be locally continuous from a subset of Y into X , where Y is a Banach space which is contained in X and has a stronger norm defined through a fractional power of − A . The characterization is applied to the global solvability of the mixed problem for the complex Ginzburg–Landau equation.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2007.10.035</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Analytic semigroup ; Exact sciences and technology ; Finite differences and functional equations ; Fractional power ; Global analysis, analysis on manifolds ; Group theory ; Group theory and generalizations ; Mathematical analysis ; Mathematics ; Mild solution ; Partial differential equations ; Sciences and techniques of general use ; Semigroup of locally Lipschitz operators ; Semilinear evolution equation of parabolic type ; Smoothing effect ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2008-12, Vol.69 (11), p.4025-4054</ispartof><rights>2007 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b426e75ff8cd04de2cf455feaf685139730957d6f9942153c5629071ebb0951a3</citedby><cites>FETCH-LOGICAL-c355t-b426e75ff8cd04de2cf455feaf685139730957d6f9942153c5629071ebb0951a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X07007092$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20857008$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsumoto, Toshitaka</creatorcontrib><creatorcontrib>Tanaka, Naoki</creatorcontrib><title>Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type</title><title>Nonlinear analysis</title><description>A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t &gt; 0 . By parabolic type we mean that the operator A is the infinitesimal generator of an analytic ( C 0 ) semigroup on a general Banach space X . The operator B is assumed to be locally continuous from a subset of Y into X , where Y is a Banach space which is contained in X and has a stronger norm defined through a fractional power of − A . The characterization is applied to the global solvability of the mixed problem for the complex Ginzburg–Landau equation.</description><subject>Analytic semigroup</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Fractional power</subject><subject>Global analysis, analysis on manifolds</subject><subject>Group theory</subject><subject>Group theory and generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mild solution</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Semigroup of locally Lipschitz operators</subject><subject>Semilinear evolution equation of parabolic type</subject><subject>Smoothing effect</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1UE1v1DAUtBBILIU7R1_glq0dx3bCDVV8SStxoJV6s946z9Qrb5zaTtH21-OwVW-c3tfMPM0Q8p6zLWdcXR62E2xbxnQdt0zIF2TDey0a2XL5kmyYUG0jO3X7mrzJ-cAY41qoDTn8wqP_neIyZxodDdFCCCe683O2d7480jhjghJTppBztB4KjvSPL3c0V2bwE0Ki-BDDUnycKN4vsDb_1GZIsI_BW1pOM74lrxyEjO-e6gW5-frl-up7s_v57cfV511jhZSl2XetQi2d6-3IuhFb6zopHYJTveRi0IINUo_KDUNXvQkrVTswzXG_rwcO4oJ8POvOKd4vmIs5-mwxBJgwLtkIxVvV674C2RloU8w5oTNz8kdIJ8OZWUM1BzOBWUNdNzXUSvnwpA25JuUSTNbnZ17LeqkZW6U_nXFYjT54TCZbj5PF0Se0xYzR___JX645jbo</recordid><startdate>20081201</startdate><enddate>20081201</enddate><creator>Matsumoto, Toshitaka</creator><creator>Tanaka, Naoki</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20081201</creationdate><title>Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type</title><author>Matsumoto, Toshitaka ; Tanaka, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b426e75ff8cd04de2cf455feaf685139730957d6f9942153c5629071ebb0951a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytic semigroup</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Fractional power</topic><topic>Global analysis, analysis on manifolds</topic><topic>Group theory</topic><topic>Group theory and generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mild solution</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Semigroup of locally Lipschitz operators</topic><topic>Semilinear evolution equation of parabolic type</topic><topic>Smoothing effect</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Toshitaka</creatorcontrib><creatorcontrib>Tanaka, Naoki</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, Toshitaka</au><au>Tanaka, Naoki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type</atitle><jtitle>Nonlinear analysis</jtitle><date>2008-12-01</date><risdate>2008</risdate><volume>69</volume><issue>11</issue><spage>4025</spage><epage>4054</epage><pages>4025-4054</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t &gt; 0 . By parabolic type we mean that the operator A is the infinitesimal generator of an analytic ( C 0 ) semigroup on a general Banach space X . The operator B is assumed to be locally continuous from a subset of Y into X , where Y is a Banach space which is contained in X and has a stronger norm defined through a fractional power of − A . The characterization is applied to the global solvability of the mixed problem for the complex Ginzburg–Landau equation.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2007.10.035</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2008-12, Vol.69 (11), p.4025-4054
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_36126878
source Elsevier ScienceDirect Journals
subjects Analytic semigroup
Exact sciences and technology
Finite differences and functional equations
Fractional power
Global analysis, analysis on manifolds
Group theory
Group theory and generalizations
Mathematical analysis
Mathematics
Mild solution
Partial differential equations
Sciences and techniques of general use
Semigroup of locally Lipschitz operators
Semilinear evolution equation of parabolic type
Smoothing effect
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semigroups%20of%20locally%20Lipschitz%20operators%20associated%20with%20semilinear%20evolution%20equations%20of%20parabolic%20type&rft.jtitle=Nonlinear%20analysis&rft.au=Matsumoto,%20Toshitaka&rft.date=2008-12-01&rft.volume=69&rft.issue=11&rft.spage=4025&rft.epage=4054&rft.pages=4025-4054&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2007.10.035&rft_dat=%3Cproquest_cross%3E36126878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=36126878&rft_id=info:pmid/&rft_els_id=S0362546X07007092&rfr_iscdi=true