Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type

A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t > 0 . By parabolic type we mean that the operator A is the infinitesimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2008-12, Vol.69 (11), p.4025-4054
Hauptverfasser: Matsumoto, Toshitaka, Tanaka, Naoki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A characterization problem is discussed, of semigroups of locally Lipschitz operators providing mild solutions to the Cauchy problem for the semilinear evolution equation of parabolic type u ′ ( t ) = ( A + B ) u ( t ) for t > 0 . By parabolic type we mean that the operator A is the infinitesimal generator of an analytic ( C 0 ) semigroup on a general Banach space X . The operator B is assumed to be locally continuous from a subset of Y into X , where Y is a Banach space which is contained in X and has a stronger norm defined through a fractional power of − A . The characterization is applied to the global solvability of the mixed problem for the complex Ginzburg–Landau equation.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2007.10.035